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DURINN: Adversarial Memory and Thread Interleaving
for Detecting Durable Linearizability Bugs

Xinwei Fu
Virginia Tech

Abstract

Non-volatile memory (NVM) has promoted the develop-
ment of concurrent crash-consistent data structures, which
serve as the backbone of various in-memory persistent appli-
cations. Durable linearizability defines the correct semantics
of NVM-backed concurrent crash-consistent data structures,
in which linearizability is preserved even in the presence of
a crash event. However, designing and implementing a cor-
rect durable linearizable data structure remain challenging
as developers are to manually control durability (persistence)
using low-level cache flush and store fence instructions.

We present DURINN, to the best of our knowledge, the
first durable linearizability checker for concurrent NVM data
structures. DURINN is based on the novel observation on
the gap between linearizability point — when the changes to
a concurrent data structure become publicly visible — and
durability point — when the changes become persistent. From
the detailed gap analysis, we derive three durable lineariz-
ability bug patterns that render a linearizable data structure
not durable linearizable. To tame the huge NVM states and
thread interleaving test space, DURINN statically identifies
likely-linearization points and actively constructs adversarial
NVM state and thread interleaving settings that increase the
likelihood of revealing durable linearizability bugs. DURINN
effectively detected 27 (15 new) durable linearizability bugs
from 12 concurrent NVM data structures without a test space
explosion problem.

1 Introduction

Non-volatile memory (NVM) is becoming widely adopted in
various computer systems thanks to its storage-and-memory-
like characteristics. Like storage, NVM is persistent across
a power cycle and has a high density. Like memory, NVM
provides byte-addressability and low-latency properties. A
program can persist data in NVM using load and store in-
structions without paying storage stack overhead. Notably,
Intel’s Optane DC Persistent Memory [13,47] has already
been deployed in cloud [3] and supercomputer [2]. ARM also
has announced its support for NVM [12, 14]. The upcoming
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Compute Express Link (CXL) [20] standard introduces cache-
coherent CXL-attached NVM card with on-device cache.

The persistence and low-latency properties of NVM have
promoted the development of various NVM-backed concur-
rent crash-consistent data structures, which serve as the key
enabler of the application-level crash-consistency guarantee.
For instance, concurrent NVM hash table is the backbone
of NVM-backed memcached [7] and redis [10]. Concurrent
NVM B-+tree and hash map are the cores of pmemkv [4].
Concurrent NVM B-trees are used in NVM-backed file sys-
tems [19,24-26]. In the event of an application or system
crash, or a sudden power failure (a crash hereafter for brevity),
an NVM program built on crash-consistent data structures can
seamlessly resume its execution from the (recovered) NVM
state as if nothing has happened.

Durable linearizability [40] defines the correct semantics
of NVM-backed concurrent crash-consistent data structures,
as linearizability [33] is the norm correctness standard for
traditional (non-NVM) concurrent data structures. At a high
level, durable linearizability requires that the effects of com-
pleted operations before a crash should remain completed
and visible (like linearizability). Additionally, durable lin-
earizability requires that the operation upon a crash be either
fully executed (“all” semantic) or not at all executed (“noth-
ing” semantic). However, designing and implementing correct
durable linearizable data structures remain very challenging.

The fundamental challenge in developing a durable lin-
earizable NVM data structure lies in the gap between the
linearization point (visibility) and the durability point (persis-
tence). Concurrent data structures use a synchronization op-
eration (e.g., compare-and-swap (CAS) in lock-free ones and
lock/unlock in lock-based ones) as the linearization point to
make one thread’s effect visible to other threads. However, the
completion of a synchronization operation does not guarantee
durability. When the new value of a store (or CAS) instruction
reaches a cache, it becomes visible, but it is not yet durable
until it is written back to the NVM. A data staying in a volatile

USENIX Association

16th USENIX Symposium on Operating Systems Design and Implementation 195



cache! (as a dirty line) is lost upon a crash, and a cache may
evict cache lines in an arbitrary order that is different from
the program (store) order. As a result, the durability point
may come later in time and may appear in a different order
with respect to the preceding stores within the same thread
or the remote loads from other threads. To ensure durable
linearizability, developers have to manually control durability
using cache line flush and store fence instructions (e.g., clwb
and sfence in x86 architecture), making durable linearizable
NVM programming error-prone.

Unfortunately, existing solutions are not sufficient in test-
ing durable linearizability of concurrent NVM data structures.
Prior linearizability testing tools [15, 63] do not consider
crash and recovery semantics. NVM-specific crash consis-
tency testing tools either require user-defined custom ora-
cles [22,31,35,43,45,46,51] or are limited to single-threaded
NVM programs [30]. It is non-trivial to extend them for
durable linearizability because testing space grows exponen-
tially in two dimensions: crash states and thread interleaving.

This paper presents DURINN, an active and scalable
durable linearizability checker for concurrent NVM data struc-
tures. DURINN is based on the novel observation on the gap
between linearizability point where the changes to a data struc-
ture becomes visible and durability point where the changes
become persistent and thus remain visible even after a crash.
After analyzing what could go wrong if a crash occurs before,
after, or between the linearizability and durability points, we
derive three durable linearizability (DL) bug patterns that
render a linearizable data structure not durable linearizable.

To tame the huge test space, DURINN uses two novel tech-
niques: 1) adversarial crash state and thread interleaving con-
struction, and 2) likely-linearization point inference. DURINN
serves as an adversary of the three DL bug patterns, and
actively constructs adversarial crash scenarios that specify
which stores to (or not to) persist and which thread inter-
leaving to consider. The intuition behind adversarial crash
state construction is to maximize the difference between a
constructed crash state and a consistent state preserving DL
conditions, thus increasing the likelihood of revealing DL
bugs. Furthermore, DURINN employs static program analysis
to identify likely-linearization points and focuses on testing a
program crash before and after those linearization points.

We evaluate DURINN with 13 concurrent NVM data struc-
tures, which are highly optimized for NVM and have shown to
be more scalable than (simple) NVM hash tables and B-trees
used in memcached, redis, pmemkv, etc. DURINN detected 27
(15 new) durable linearizability bugs in 12 data structures. 7
of 15 new bugs have been confirmed by the developers so far.
Our evaluation also shows that DURINN can detect concurrent
DL bugs (better detection effectiveness) with fewer tests (bet-
ter scalability), compared to Witcher [30], the state-of-the-art
NVM crash-consistency bug detector.

'We discuss the implications of (future) persistent cache later in §7.2.

The paper makes the following scientific contributions:

* We present three durable linearizability bug patterns after
performing detailed analysis on how a linearizable data
structure may violate durable linearizability.

* To our best knowledge, DURINN is the first durable lin-
earizability checker designed for concurrent NVM data
structures. The proposed adversarial crash state and thread
interleaving construction and likely-linearization point in-
ference allow DURINN to detect DL bugs in an active and
scalable manner.

e DURINN reports 27 (15 new) bugs and outperforms the
state-of-the-art NVM testing tool in terms of bug detection
effectiveness and test space reduction.

2 Background

In this section, we first provide background on linearizability
(§2.1) and durable linearizability (§2.2), and then discuss the
persistence model used in this paper (§2.3).

2.1 Linearizability

Linearizability [33] is the widely-used correctness standard
for concurrent data structures. Formally, linearizability is de-
fined over an existence of an equivalent legal sequential his-
tory. Informally, a concurrent data structure is linearizable if
each operation appears to take effect instantaneously at some
moment between the operation begin and end events. If one
operation precedes another, then the earlier operation must
have taken effect before the next one. If two operations over-
lap, then their order can be serialized in any arbitrary order.
Some pending operations can be thought to be complete.

A linearization point (LP) is a program point where an
operation takes effect and its effects become visible to other
operations. In a lock-based data structure, a critical section
(or an unlock point) often serves as the linearization point. In
a lock-free data structure, the linearization point is typically a
single-step atomic instruction (e.g., CAS) that makes its change
visible to others. We refer to the variable used to make an
operation’s effect visible as a synchronization variable (SV).
Atomically updating SV is a linearization point for a writer
operation (e.g., insert), while reading SV is a linearization
point for a reader operation (e.g., get).

2.2 Durable Linearizability

Durable linearizability [40] extends linearizability with the
notion of a crash. With durable linearizability, a history may
include a system-wide crash event (which does not belong to
a specific thread) in addition to the operation begin and end
events. The definition of precedence order is also extended
to incorporate a crash. In durable linearizability, an operation
makes its effects visible to others at the linearization point
(like linearizability). Additionally, an operation makes its
effects persisted at the durability point (DP) so that its effects
remain completed and visible after a crash.

A completed operation refers to an operation whose in-
structions are all executed, end event is observed, and result
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_ insert (k, v2) crash

insert (k, v1)
1. < >

T2: <_>get (k) recovery get (k)
Case 1: returns vl returns ?
Case 2: returns v2
time >

Figure 1: Durable linearizability example. The result of the second
get (after a crash) depends on the result of the first get (before a
crash), which also determines if the crashed insert takes effect.

is returned. Some crash-consistent programs that can recover

from inconsistent NVM state using a custom crash consis-

tency protocol may not require a completed operation to be
fully durable.

Durable linearizability requires the following conditions:
* (C1) Without a crash, all operations are linearizable.

* (C2) If a crash happens, all previously completed operations
(before a crash) should remain completed and their effects
should remain visible after a crash.

* (C3) The operations that have not completed upon a crash
could be considered either completed or not. When con-
sidered completed, its effect should be visible. In other
words, the crashed operation should provide all-or-nothing
semantics (fully executed or not at all executed).

Figure 1 illustrates a durable linearizable example. Thread
T1’s first insert completes before a crash, so it should remain
visible even after a crash by (C2). If T2’s first get returns v1
before a crash, the second get after the crash could return
either v1 or v2, with a flexibility to follow all or nothing se-
mantics in (C3). However, if T2’s first get returns v2 (i.e., it
completes) before a crash, then the second get after the crash
should return v2, according to (C1) and (C2).

Prior works such as Line-up [15] and Round-up [63] have
demonstrated the practicality of (C1) linearizability testing.
DURINN assumes a data structure under test is linearizable
without a crash, and focuses on checking if it satisfies the (C2)
and (C3) conditions in the presence of a crash.

2.3 Persistence Model

This paper assumes a volatile cache. This is the case for the
current Intel x86 architecture with Optane NVM [39, 58] and
ARM [12,14]. The future Compute Express Link (CXL) [20]
standard also introduces a cache-coherent interconnect and a
CXL-attached NVM card with a volatile on-device cache. We
will discuss the implications of persistent cache later in §7.2.

Given a volatile cache, dirty cache lines are lost upon a
crash. To control durability, Intel provides cache flush in-
structions such as clflush, c1flushopt, and clwb. When the
asynchronous flush clwb instruction is used for performance,
the store fence sfence instruction should be used together
to ensure the completion of preceding clwb instructions [58].
Similarly, ARM supports dc cvap cache flush and dsb fence
instructions [12, 14]. CXL introduces Global Persistent Flush
(GPF) to enforce the persistence ordering on emerging CXL-

Linearization Durability
Point (LP) Point (DP)
operation < - - |
N AN AN J
Y A Y
R1 R2 R3
visible but both visible

not visible

not durable and durable

time
Figure 2: Linearization point and durability point split an operation
into three-time intervals as per its visibility and durability guarantees.

attached NVM card [20].
3 Durable Linearizability Bugs

This section discusses the gap between linearization point and
durability point (§3.1), and presents three durable lineariz-
ability bug patterns derived from the gap analysis, along with
real-world examples detected by DURINN (§3.2-§3.4).

3.1 The Gap Between LP and DP

As illustrated in Figure 2, the duration of an operation can
be partitioned into three regions (R1, R2, and R3) based on the
linearization point (LP) and the durability point (DP). At LP,
the effect of an operation becomes visible to other threads. At
DP, the effect of an operation becomes durable (persisted) so
that it can survive a crash and remain visible after a crash.

The bug patterns presented in this section assume that LP is
known given an operation. We later in §5.2 discuss the static
methods we used to identify likely-linearization points. For
example, a lock-free insert () operation often uses an atomic
instruction on a synchronization variable to make its effect
visible in a single step. The atomic update (e.g., CAS) forms
LP, and the following cache line flush and fence instructions
(e.g., clwb and sfence) become DP.

The gap between LP and DP leads to different visibility
and durability guarantees. Before LP (region R1), the effect
of an operation is neither visible nor durable. Between LP
and DP (region R2), the effect of an operation is visible but
not durable. After DP (region R3), the effect of an operation
is visible as well as durable. Durable linearizability defines
different correct/wrong behaviors depending on when a crash
occurs: after DP (region R3), before DP (regions R1 and R2),
and between LP and DP (region R1). From the classification,
we derive the following three DL bug patterns.

3.2 DL Bug Pattern 1: An Incompletely-Durable Bug

The first Incompletely-Durable bug pattern considers a crash
after DP (in region R3). As a crash happens after DP, all the
changes made by the crashed operation should be completed
and persisted as if no crash has happened. In other words, the
crashed operation should provide the “all” (fully-executed)
semantic guarantee. After resuming from a crash, if another
operation may observe incompletely durable effects, then it
may produce wrong output violating durable linearizability.
Figure 3 illustrates the Incompletely-Durable bug pattern.
Since the crash happens after DP of T1’s insert (K, V), to be
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T1: insert(K, V) LP DP
——— *— ‘ § T2: get(K)
W(K) W(V){ CAS(T) flush 4 ¢ incorrectly returns NULL
fenceireCOVery i (correctly returns V)
incompletely :
durable R(NULL)
time’

Figure 3: An Incompletely-Durable bug pattern. If a crash occurs
after DP, the insert operation should make all its effects durable
completely. Otherwise, the get operation after a crash may not be
able to see its effect, producing wrong output.

T1: insert(K, V) LP

+——o—o— - ! i T2: get(K)
W(K) W(V)iCAS(T) j incorrectly returns V
i recovery i (correctly returns NULL)

unrecovered
R(V)

time"
Figure 4: An Unrecovered-Durable bug pattern example. If a crash
happens before DP, the insert operation should recover (undo) any
partially durable effect. Otherwise, the get operation after a crash
may see its partial effect, producing wrong output.

T1:insert(K, V)  LP

: : T2: get(K)
W(EK)W(V)CAS(T) i incorrectly returns NULL
—eo—»p i Tecovery : (correctly returns V)
T2: get(K) R(V) i
returns visible-but-not-durable V R(NULL)
time’

Figure 5: A Visible-But-Not-Durable bug pattern. For a crash be-
tween LP and DP of insert, the concurrent get may observe and
return the visible-but-not-durable value. However, the second get
after a crash may not be able to return the same value as the effect
of insert is not durable.

durable linearizable, T2’s get(K) should return V after the
recovery.

To avoid Incompletely-Durable bugs, all the preceding
stores must be persisted before the store (or CAS) on a synchro-
nization variable becomes persisted (DP), using cache line
flush and fence instructions. This is analogous to the lineariz-
ability programming idiom in which all the preceding stores
must be visible before the store (or CAS) on a synchronization
variable become visible (LP), using a fence instruction.

Figure 6(a) shows a part of rehashing code in P-CLHT [44],
a concurrent NVM hash table. The code first allocates a new
hash table (line 4), updates/persists the new hash table (lines
6-7), and then atomically sets the root pointer h to the new
hash table, making its effect visible (line 11, which is LP).
However, cl1flush_next_check at line 8 does not flush all
the updated NVM data in the new hash table and leaves a
part unpersisted (an Incompletely-Durable bug). If a crash
happens after DP — after persisting the root pointer h (line 13),
the inserted key-value data after a crash may be lost, violating
durable linearizability.

@clht 1b_res.c:632 (CLHT 5b4cf3e)  // @btree.h:616 (Fast-Fair c86f5fb)
1 intht resize pes(clht t*h) { 14 page™ store(btree™ bt, ...) {
2 15 /..
3 create a new hash table 16 // create a new node
4 clth_hastable t* ht new = 17  page* sibling = new page();
5 clht_hashtable_create(); 18  //initialize the new node
6 initialize the new hash table 19 /.
7 20
8  clflush_next_check(ht_new); 21  //add new node to sibling
9  fence(); 22 hdrsibling_ptr = sibling;
10 23 clflush((char*) &hdr, ...);
11@ SWAP_U64(h, ht_new); 24 /..
12 25@ bt—root = (char*) new_root;

13 @ clflush(h, sizeof(uint64 t), true); 26

27
"""" f TTT T T T T 28@ clflush(&(bt—root), ...);

(a) Incompletely-Durable bug (b) Unrecovered-Durable bug

(@btree.h:474 (Fast-Fair c86f5fb)

29 page* store(btree* bt, ...) {

30 hdr.mtx—lock();

31 new_entry = &records[0];

32 new_entry— key = key;

33@ new_entry—sptr = ptr;

(@btree.h:784 (Fast-Fair c86f5fb)

36 char* linear_search(key t key) {
37 if ((k = records[0].key) == key)
38 @ if ((t = records[0].ptr) != NULL))
39 if (k == records[0].key)
40 return t;

34 @ clflush((char*) this, ...);
35  hdr.mtx—unlock();

(¢) Visible-But-Not-Durable bug

Figure 6: Durable linearizability bug examples in P-CLHT [44] (a)
and Fast-Fair [34] (b) and (c). A red circle represents LP; green
represents DP; and a red lightning bolt represents a crash.

3.3 DL Bug Pattern 2: An Unrecovered-Durable Bug

The second Unrecovered-Durable bug pattern considers a
crash before DP (in regions R1 and R2). As a crash happens be-
fore DP, any temporal change made by the crashed operation
should not be visible after the resumption. That is, the crashed
operation should support the “nothing” (not-at-all-executed)
semantic. After resuming from a crash, if another operation
may observe unrecovered durable effects, it may produce
wrong output violating durable linearizability. Figure 4 illus-
trates the Unrecovered-Durable bug pattern. Since the crash
happens before DP of T1’s insert(K,V), to be durable lin-
earizable, T2’s get (K) should not return V after the recovery.

To avoid Unrecovered-Durable bugs, a durable linearizable
data structure may opt to buffer/undo the effects of preceding
stores before DP, or embed a custom logic to safely ignore
partial NVM updates: e.g., read key K and value V only if
token T is set. This pattern is called “guarded protection” [30]
and we discuss it in detail in §5.2.

Figure 6(b) shows an Unrecovered-Durable bug from Fast-
Fair [34], alock-based NVM B+tree. While splitting a node, it
first creates a new node (line 17) and initializes the new node
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(lines 18-19). Then it adds the new node to the sibling of the
current node (line 22) and persists the change (line 23). Later,
it sets the new root (line 25, which is LP). The new_root in
line 25 is the new root node of the B+tree after a node split.
The node, which the hdr belongs to, is a child of the new
root. If a crash happens before persisting the new root node
(line 28, DP), the B+tree will be in an illegal state in which
the root node has a sibling node. Any further operation leads
to a program crash and will lose all previously completed
operations, violating durable linearizability.

3.4 DL Bug Pattern 3: A Visible-But-Not-Durable Bug

The last Visible-But-Not-Durable bug pattern considers a
crash between LP and DP (in region R2). If a crash happens
between them, the effect of the current operation may be vis-
ible but not yet durable. As it is visible, another concurrent
operation can see the effect and take an action based on the
observation: e.g., returning a non-durable value.

Figure 5 illustrates an example. While thread T1 is perform-
ing an insert(K,V) operation and just finishes executing its
LP but not DP, thread T2 performs a concurrent get (K) oper-
ation. The concurrent get (K) sees the non-durable effect of
insert(K,V) and returns the value V. As the get (K) is com-
pleted before a crash, to be durable linearizable, T2’s second
get (K) after the recovery should return V as well, but it cannot
as the effect of insert (K, V) has not been persisted. Note that
Visible-But-Not-Durable bugs may also occur between con-
current writers, say two insert(A) and insert(B) operations
in a sorted linked list. The later insert(B) operation in the
linearizable order may see the effect of the earlier insert (A)
operation, adding B after A. Durable linearizability may be vi-
olated if a crash occurs after insert(B) completes but before
insert(A) finishes.

To avoid Visible-But-Not-Durable bugs, an operation (later
in the linearizable order) may be designed to wait until the
earlier operation passes its DP. Alternatively, a lock-free de-
sign may use a “persistence-helping” mechanism [21, 28].
Suppose operation A updated X but did not persist it yet. An-
other concurrent operation B wants to take actions (e.g., takes
a different branch, persists other data) based on the value
of X. Then B “helps” persist X on behalf of A. If a lock-free
data structure does not implement a similar helping mecha-
nism correctly and if B relies on unpersisted updates from A,
then a Visible-But-Not-Durable bug may happen. The helping
logic is analogous to the linearizability programming idiom in
which one thread helps fix temporal inconsistency on behalf
of another thread.

Figure 6(c) shows a Visible-But-Not-Durable bug from
Fast-Fair [34]. The left code (store) and the right code
(linear_search) are parts of insert and get operations, re-
spectively. An insert operation first acquires the lock (line
30) then writes key and ptr (lines 31-33). It then persists
the writes (line 34) and releases the lock at the end (line 35).
Since Fast-Fair allows concurrent (non-blocking) get oper-

ations while splitting a node, linking a new node is LP for
insert (line 33). On the other hand, the get operation refers
to ptr (line 38, which is LP for get) while checking if there
is any key change in-between by reading it twice (lines 37,
39). Suppose linear_search is scheduled between the LP
(line 33) and DP (line 34) of store as shown in the figure.
The concurrent get operation can read visible-but-not-durable
data. If the crash happens before insert’s DP (line 34). After
the recovery, the previously returned data cannot be accessed
anymore because unpersisted data will be lost upon a crash.
Thus, Fast-Fair violates durable linearizability.

4 Overview of Our Approach

In this section, we will first discuss the huge testing space as
the main challenge in detecting durable linearizability bugs
(§4.1). We then provide an overview of our two major tech-
niques — (1) adversarial NVM state and thread interleaving
construction (§4.2) and (2) likely-linearization point inference
(§4.3) — designed to address the test space challenge.

4.1 Challenges in Detecting DL Bugs

Existing solutions are not sufficient in testing durable lin-
earizability of concurrent NVM data structures. Traditional
linearizability testing tools, such as Line-up [15] and Round-
up [63], do not consider crash and recovery semantics. Most
NVM-specific crash consistency bug detection tools (e.g.,
Yat [43], PMTest [46], XFDetector [45], Agamotto [51],
Jaaru [31], and PMDebugger [22]) are not designed for
durable linearizability, and instead require user-defined cus-
tom oracles or consistency checkers. Some (e.g., Witcher [30])
are limited to testing single-threaded NVM programs. We dis-
cuss related work in detail in §9.

It is non-trivial to extend existing NVM testing tools such
as Yat and Witcher for durable linearizability because testing
space grows exponentially in two dimensions: NVM crash
states and thread interleaving. The crash state test space is
huge since a crash can happen any time during an execution
and a volatile cache can evict cache lines in an arbitrary order.
For example, Yat [43], an exhaustive crash consistency testing
tool, attempts to test 103! crash states for an NVM hash table
with 2000 operations [30]. Moreover, the number of thread
interleaving grows exponentially (%) with the number of
threads (n) and the number of steps (k) in each thread.

4.2 Adversarial NVM State and Thread Interleaving

We propose an adversarial technique to effectively explore the
huge testing space in finding durable linearizability bugs. In-
stead of exhaustively or randomly exploring the testing space,
we actively construct adversarial NVM states and adversar-
ial thread interleavings, which are likely to trigger the three
DL bug patterns discussed in §3. To the best of our knowl-
edge, DURINN is the first work using an adversarial testing
approach for bug detection in NVM programs.

Adversarial NVM state construction. For each DL bug
pattern and a given crash location (e.g., before or after DP),
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Figure 7: The overall architecture of DURINN.

DURINN determines which preceding stores should be or
should not be persisted to increase the likelihood of triggering
the DL bugs. For example, when testing an Incompletely-
Durable bug after DP, DURINN adversarially constructs the
(worst-case) NVM state where an update on a synchroniza-
tion variable is persisted (at DP) but the preceding stores are
not as persisted as possible. This way, DURINN can maximize
the incompleteness of durability of a target operation, increas-
ing the chance to break its “all” (fully-executed) semantic
guarantee. Note that DURINN constructs only feasible NVM
states while obeying the persistence model of a processor and
program order semantics (e.g., TSO for x86).

Adversarial thread interleaving construction. DURINN
constructs adversarial thread interleaving only when thread
interleaving is indispensable to trigger the DL bug patterns.
The Incompletely-Durable and Unrecovered-Durable bugs
do not require concurrent operations to trigger, so DURINN
tests those bug patterns in a single-threaded mode. On the
other hand, Visible-But-Not-Durable requires concurrent op-
erations. The main challenge in triggering the Visible-But-
Not-Durable bug is that two (or more) concurrent operations
must be precisely scheduled in a very narrow window be-
tween LP and DP. DURINN adversarially constructs a thread
interleaving such that a concurrent operation is scheduled
between LP and DP of another operation.

4.3 Likely-Linearization Point Inference

Our adversarial NVM state and thread interleaving construc-
tion requires the knowledge of LP locations. Manual annota-
tion of LPs would be error-prone and it makes DURINN not
automatic. A naive approach, considering all stores as LPs,
would lead to too many tests.

To address the problem, DURINN infers likely-LPs from
source code based on the common concurrent NVM program-
ming practices: (1) atomic instructions are used in concur-
rent programs for synchronization; (2) concurrent programs
usually make a memory region visible to other threads after
initialing the memory region; (3) NVM programs usually
use guarded-protection [30] to ensure persistence atomic-
ity. DURINN employs static program analysis to identify the
above programming practices and infer likely-LPs. They are
then fed to our adversarial NVM state and thread interleaving
construction. The inferred likely-LPs are not necessary to be
precise. A false positive LP will only lead to more tests. As
far as we know, DURINN is the first work that statically infers
linearization points from concurrent NVM programs.

'/ writer 1 // Memory allocation

1 *key_ptr = key; 2 Node* new_node = alloc(sz);

2 “*val ptr =val; 3 // Initialization

3 flush(key ptr); 4 new_node—key = key;

4 flush(val ptr); 5 new_node—val = val;

5 fence(); 6 new node—next=NULL;

6 7 flush(&new_node—key);
®7 flag=1;// set guardian 8 flush(&new node—wval);

8 flush(&flag); 9 flush(&new node—next);

9 fence(); 10 fence();

11

// reader 12 // Add node to the core

10 // guardian read @13 core—tail = new_node;
@11 if (flag==1) 14 flush(&core—tail);

12 func(key_ptr, val_ptr); 15 fence();

(a) Guarded-Protection (b) Publish-after-Initialization

Figure 8: Examples for Guarded-Protection and Publish-after-
Initialization from (a) CCEH [50] and (b) NVTraverse [28]. Likely-
linearization points are at line 7 and 13 in (a) and (b), respectively.

S Design of DURINN

We present the overall architecture of DURINN at Figure 7.
DURINN takes as input a target NVM data structure and a
test case (a sequence of operations, such as insert, delete,
and get) and reports detected durable linearizability bugs.
DURINN first instruments a program and runs a test case to
collect a memory trace (§5.1). DURINN then infers likely-
linearization points from the trace (§5.2). Given the memory
trace and the identified likely-linearization points, DURINN
performs adversarial NVM state and thread interleaving con-
struction (§5.3) to generate a collection of crashed NVM im-
ages and thread schedules to test. Lastly, DURINN validates
the generated crashed NVM images along with the generated
thread schedules to detect durable linearizability bugs (§5.4).

5.1 Tracing Memory Accesses

DURINN instruments all NVM memory accesses (load,
store”) and NVM heap allocation. DURINN also traces con-
trol flow transfers (branch, function call) because our likely-
linearization point inference (§5.2) relies on program depen-
dence analysis. To track the persistent state (i.e., whether
an NVM address is persisted or not) for adversarial NVM
state construction (§5.3), we instrument all flush and memory
fence instructions. We also trace lock operations for adver-
sarial thread interleaving construction (§5.3). For durable
linearization validation (§5.4), we trace the value of each
store instruction.

We implement an LLVM compiler pass [11] for the instru-
mentation and execute the instrumented binary with a test
case to collect an execution trace. To ensure the total order-
ing in the execution trace for the analysis of multi-threaded
programs, we protect our tracing code using a global mutex.
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5.2 Likely-Linearization Point Inference

DURINN infers likely-linearization points by analyzing three
concurrent NVM programming practices: Afomic instruction,
Guarded-Protection and Publish-after-Initialization.

Atomic Instruction. In lock-free data structures, atomic in-
structions are typically used to update a synchronization vari-
able and to make the effect of an operation atomically visible
to other threads. Thus, DURINN identifies atomic instructions
(e.g., CAS, fetch-and-add) as likely-linearization points for
lock-free writer operations (e.g., insert).

Guarded-Protection. Guarded protection is a widely used
NVM programming pattern (e.g., key-value store, persistent
data structure, file systems) to ensure atomic persistence of
data [30]. A flag variable called “guardian” denotes whether
the “guarded data” is valid or not. Thus, writing or reading a
guardian is a linearization point. In Figure 8(a), for instance,
a writer ensures that key and value are persisted before the
flag, a guardian, is persisted. Also, a reader check if the flag
(line 11) is set before reading the key and value (“guarded
read”). Writing to the flag (line 7) is writer’s linearization
point since the changes become visible after setting the flag.

Based on this observation, DURINN performs program anal-
ysis to identify any stores to guardians. DURINN first finds
out the guarded read pattern in the code to identify guardian
candidates from conditional branch instructions. From the
branch condition variables, DURINN performs the backward
dataflow analysis to identify NVM memory addresses that
are data-dependent on the branch condition variables. Then
DURINN marks the stores to those NVM memory addresses
as likely-linearization points.

Publish-after-Initialization. As an optimization to reduce
persistence overhead, many NVM program follows so-called
publish-after-initialization steps when adding a new memory
object in the global data structure: (1) first allocating an NVM
memory, (2) initializing the memory, and finally (3) linking
(publishing) the memory to the global structure. For example,
in Figure 8(b), a node is allocated first (line 2), then initialized
(lines 4-10), finally is linked to the global list (core—tail
at lines 13-15). The benefit of the publish-after-initialization
idiom is that any writes to the new memory (lines 4-10) are not
externally visible so that the persistence ordering of the writes
in the initialization phase is relaxed until the new memory is
published (line 13), improving performance (only one fence
is needed at line 10).

Based on this NVM programming idiom, we filter out all
the stores to newly allocated memory regions within an oper-
ation, and exclude them from likely-linearization points. We
found that this pruning is highly useful for operations requir-
ing many writes, such as node split/merge operations for a
tree and a rehashing operation for a hash table.

2Non-temporal stores are supported/modeled as store+flush.

T1: insert(K, V) LP DP T1: insert(K, V) LP

<“——o .—.—é <+“——o—o -
WEK) W(V): CAS(T)flush” WEK) W(V)i CAS(T)
fence; b
All preceding stores SV store All preceding stores SV store is
are NOT persisted  is persisted: o are persisted NOT persisted:
: >

time * time *

(a) Incompletely-Durable test. (b) Unrecovered-Durable test.

TI: insert(K, V) LP
< i >
WK) W(V), casm 12 ‘ i
All preceding stores and SV . RM__RV) . &

store are NOT persisted Returns visible-but-not durable V

time ©
(c) Visible-But-Not-Durable test.
Figure 9: Adversarial test strategies for Incompletely-Durable,

Unrecovered-Durable, and Visible-But-Not-Durable bugs. LP: lin-
earization point. DP: durability point. SV: synchronization variable.

5.3 Adversarial NVM State and Thread Interleaving
Construction

In this section, we first describe our adversarial construc-
tion approaches for each DL bug pattern (§5.3.1, §5.3.2, and
§5.3.3). We then introduce our cache/NVM simulations to
generate feasible NVM states (§5.3.4) for the validation.

5.3.1 Incompletely-Durable Bug Pattern

Testing Incompletely-Durable bugs can be performed for each
operation in isolation without considering concurrent opera-
tions. When a crash happens after DP, to be durable lineariz-
able, the crashing operation should provide the “all” (fully-
executed) semantic and ensure that its effect remains visible
after a crash (Figure 3). Then, the adversarial NVM state that
increases the chance to trigger Incompletely-Durable bugs for
a crash after DP would be to make all the preceding stores as
unpersisted as possible. In other words, we artificially attempt
to create a feasible yet worst NVM state that many updates
made by an operation are not persisted.

Figure 9a illustrates our adversarial NVM state construc-
tion for insert (K, V) in which an atomic update to a synchro-
nization variable T serves as LP and persisting it serves as DP.
The adversarial NVM state would be to make the change to T
persisted, but leave the changes to key and value unpersisted
so that the new key and value data is not visible after a crash
even though the synchronization variable T says differently.
Note that we attempt to leave stores unpersisted only if pos-
sible. We do not force. We obey memory consistency and
persistence model (e.g., the semantics of fence, flush).

5.3.2 Unrecovered-Durable Bug Pattern

Testing Unrecovered-Durable bugs can also be performed for
each operation in isolation. If a crash happens before DP, for
durable linearizability, the crashing operation should provide
the “nothing” (not-at-all-executed) semantic and ensure that
any partial update is not visible after a crash (Figure 4). Then,
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the adversarial NVM state that stress-tests the data structure
under test to expose Unrecovered-Durable bugs for a crash
before DP would be to make all the preceding stores as per-
sisted as possible. That is, we are interested in constructing a
feasible yet worst NVM state that many updates made by an
operation are persisted, stress-testing its recovery logic.
Figure 9b shows our adversarial NVM state construction
for the same insert(K,V) example in which CAS(T) is LP
and persisting it is DP. We construct the adversarial NVM
state such that the changes to key and value are persisted,
but not the synchronization variable T. This way, the new
key and value data may be visible after a crash when the
synchronization variable T says they should not.

5.3.3 Visible-But-Not-Durable Bug Pattern

The Visible-But-Not-Durable bugs are related to the case
where an operation takes an action after observing a visible-
yet-not-durable state of another concurrent operation (Fig-
ure 5). Unlike the prior two bug patterns, testing Visible-But-
Not-Durable bugs should be performed in a context sensitive
manner. Figure 9c illustrates our adversarial NVM state and
thread interleaving method for Visible-But-Not-Durable bugs,
which requires the following three conditions.

Requirements. First, DURINN needs (/) racy operations. In
Figure 9c, thread T1’s insert(K,V) writes (CAS) on T and
T2’s get (K) reads T. Second, DURINN needs some (2) prefix
operations (a sequence of other operations to execute before
testing racy operations) that construct the preconditions for
a race condition to be triggered. For example, an NVM data
structure should be in a certain state (e.g., initiating a resizing
or node splitting process) to exhibit a race condition. Last,
DURINN needs to control (3) precise thread interleaving in
which a thread makes a progress based on another thread’s
visible-but-not-durable effect and a crash happens between
LP and DP as illustrated in Figure 9c.

Challenges. However, constructing the test scenarios that
satisfy all the three conditions is very challenging because
not only search space is huge but also the three conditions are
inter-dependent. For example, two racy operations with one
sequence of prefix operations may not be racy any more with
another sequence of prefix operations.

Our Approach. We propose techniques to find out adversar-
ial (1) racy operations, (2) prefix operations, and (3) thread in-
terleaving in a scalable manner by analyzing a single-threaded
execution trace. Figure 10 shows the overall workflow. First,
DURINN detects potentially racy two operation by analyzing
a single-threaded memory trace. Second, if two racy opera-
tions are not consecutive, DURINN reorders the operations
of the test case, places the two operations consecutively, and
checks whether the same race can be triggered: i.e., the new
memory trace with the re-ordered operations still include the
same race. Last, if two re-ordered operations are still racy,
DURINN generates adversarial thread interleaving for these
two operations. In the rest, we discuss each step in detail.

(1) Detect potentially
racy operations

e (D
W(K)
W(V)

op 10 ® CAS(T)

op 11-19{

®R(T)
op 20 if (K==...)
return V

op2l-..C

(2) Detect racy operations
sharing the prefix operations

o (T
op 11-|9{

- W(K) (- Thread 1
op 10 )

(3) Generate thread interleaving
of two racy operations

Main Thread

@ CAS(T)

OR(T)
op 20 if (K==...)
return V

Figure 10: The workflow of adversarial NVM state and thread inter-
leaving construction for Visible-But-Not-Durable bugs.

(1) Finding racy operations. The first step is to find po-
tentially race operations. The inputs for the analysis are a
single-threaded execution trace (§5.1) and the inferred likely-
linearization points (§5.2). DURINN finds a pair of potentially
racy operations that write-write or write-read synchronization
variables (updated at likely-linearization points). These two
potentially racy operations are not necessary to be consec-
utive in a single-threaded execution trace. In Figure 10 (1),
operation 10 and 20 are such potentially racy operations.

(2) Finding prefix operations. A pair of potentially racy
operations from the first step may not be racy when run in
parallel. One main reason is that these two operations ran
with different preceding operations (i.e., prefix operations).
In Figure 10 (1), the prefix of operation 10 is operation 1-9 but
the prefix operations of operation 20 is operation 1-19. Hence,
the precondition of an NVM data structure when running
these two operations may be different, so these two operations
may not be racy when run in parallel.

To filter out such spurious racy operations, DURINN re-
orders operations such that the two operations have the com-
mon prefix operations and places two potentially racy op-
erations consecutively. In Figure 10 (2), operations 1-9 and
11-19 becomes the prefix of operation 10 and 20. We then run
the instrumented program with the prefix and the two racy
operations in a single thread and generate a new execution
trace. If two candidates (operation 10 and 20) are still racy
with the re-arranged operations, the prefix and racy operations
will be fed in to the last step to construct thread interleaving
of the two racy operations.

(3) Controlling thread interleaving and generating NVM
state. For a given prefix operations, DURINN should precisely
control thread interleaving of two concurrent racy operations.
For example, in Figure 10 (3), thread 1 writes synchronization
variable T first, which is LP, then thread 2 preempts and reads
T then returns V to user. A crash should happen right after
when the operation in thread 2 finishes and before thread 1
executes DP to trigger a Visible-But-Not-Durable bug.

In order to precisely control thread interleaving, DURINN
uses a runtime technique using breakpoints. DURINN sets
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breakpoints at the load and store of the synchronization vari-
able (e.g., T in Figure 10). After executing the prefix opera-
tions in a single-threaded manner, DURINN lets thread 1 run
until reaching to the breakpoint of the store instruction to
the synchronization variable. Then DURINN lets thread 2 run
until it reaches the breakpoint of the load instruction of the
synchronization variable. Then DURINN lets thread 2 resume
and injects a crash right after finishing its operation.

Upon the crash, DURINN leaves all stores in thread 1 un-
persisted as an adversarial NVM state. Note that thread 2 may
not be able to finish its operation if other synchronization
with thread 1 is involved (e.g., deadlock). DURINN detects
such a case with a timeout, and regards such thread interleav-
ing infeasible. DURINN generates a gdb command script to
automate the whole process. Using a hardware breakpoint
makes DURINN’s adversarial thread interleaving control effi-
cent, though DURINN serializes a multi-threaded execution.

5.3.4 Cache and NVM Simulation

DURINN generates NVM crash images according to the adver-
sarial NVM state and thread interleaving testing methods. To
consider only feasible NVM states, DURINN simulates cache
behaviors while obeying processor’s memory consistency and
persistence models. DURINN starts from the empty cache and
NVM states and simulate the effects of store, flush, and
fence instructions along an execution trace. Particularly, we
implemented Intel’s x86-64 architecture model following total
store order (TSO) memory model consistency model [39, 56].

5.4 Durable Linearizability Validation

DURINN runs the NVM data structure under test from an
NVM crash image (generated in §5.3) and checks if it violates
durable linearizability by executing a sequence of validating
operations. At a high level, the validating operations checks
whether all operations before crash take effects (DL’s C2
condition in §2.2); and whether the crashed operation is either
fully executed or not at all executed (C3 condition). DURINN
runs recovery code before running validation operations.

More specifically, for an NVM index data structure (e.g.,
hash table, B-tree), the validating operations comprise:

1. A list of get operations to check all previously inserted
but not deleted key-values exist,

2. A get operation to check the crash operations follows all
or nothing semantics,

3. Alist of delete operations for all inserted keys, and

4. Alist of get operations to check all the deleted keys in the
previous step are indeed deleted.

Note that for each crashed image, a list of completed op-
erations and the crashing operation are known, so we know
which key has been inserted or deleted. DURINN provide sim-
ilar validating operations for other data structures: e.g., array
and queue.

6 Implementation

We implemented tracing and data flow analysis in LLVM [11].
We automatically generated gdb command files based on the
locations of breakpoints. To control the progress of each
thread in gdb, we set scheduler-locking on. Our LLVM-
related code comprises around 1900 lines of C++ code. Other
DURINN components are written in 2700 lines of Python
code. Our current prototype supports an NVM program built
on PMDK 1ibpmem or 1ibpmemobj libraries to create/load an
NVM image from/to disk. To ensure the virtual address of
the mmap-ed NVM heap are the same across different execu-
tions, we set PMEM_MMAP_HINT environment variable [38]. The
DURINN prototype is available at https://github.com/
cosmoss- jigu/durinn.

7 Discussion

7.1 False Negatives and False Positives in DURINN

DURINN may have false negatives (i.e., missing bugs) for
three reasons. First, DURINN is a trace-based dynamic tool
that takes a test case as input. DURINN may miss DL bugs
that did not appear in a trace.

Second, DURINN’s likely-LP inference is based on heuris-
tics and may miss true LPs in theory. Missing LP means no
adversarial testing, so DURINN may miss DL bugs. However,
the proposed heuristics are built on common NVM program-
ming practices, namely Guarded-Protection and Publish-after-
Initialization presented in §5.2. As a result, our empirical
study (§8.4) shows that the inferred likely-LPs do not miss
manually-identified (true/oracle) LPs and DURINN does not
miss any DL bugs detected with the oracle LPs.

Last, DURINN performs adversarial testing and does not
explore all possible NVM states and thread interleaving. In
theory, for Incompletely-Durable and Unrecovered-Durable
bugs, some more complex combinations of persisted and un-
persisted stores may be required to trigger a DL bug. For
Visible-But-Not-Durable bugs, more than two concurrent
thread interleaving may be needed to expose a DL bug. How-
ever, our empirical study (§8.5) shows that DURINN detects
all the bugs reported by the state-of-the-art Witcher [30] and
indeed found more new bugs with significantly fewer tests.

On the other hand, for a given trace under test, DURINN
does not have false positives as DURINN performs durable
linearizability validation (§5.4). Any crash NVM image (con-
structed by adversarial testing) that violates durable lineariz-
ability is indeed a definite clue of a true DL bug (by definition).
We note that multiple durable linearizability violations may
stem from one root cause.

7.2 Persistent Cache

Intel architecture is expected to adopt eADR support (Ex-
tended Asynchronous DRAM Refresh) [37] that includes a
cache into the persistent domain. For an eADR-enabled Intel

architecture, there will be no gap between LP and DP because
once the effect of a store reaches a cache, it is guaranteed to
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be written back to the NVM.

We expect DURINN remain useful when eADR is avail-
able for the following three reasons. First, eADR is unlikely
to be added to all product lines due to the high cost of bat-
tery size. In the current Intel platforms (Optane 200), eADR
support is optional and requires an additional backup bat-
tery [36]. As eADR is not expected to be available in all
machines, NVM programmers would need to write a code
to support both eADR and non-eADR machines. Second,
eADR is not the panacea if non-temporal stores (ntstores)
are used. Ntstores place data in the store buffer and bypass
caches, which is outside eADR persistent domain. For ex-
ample, PMDK pmemcpy () prefers to use movnstore for better
performance. An NVM program may lead to an inconsistent
state when data in a store buffer is not flushed into NVM
before a crash. Last, the Unrecovered-Durable bug pattern is
still an issue even with eADR because it requires recovering
or tolerating any partial updates made before linearization
point. eADR has nothing to do with such a recovery logic.
Developers still need to design and implement inconsistency-
recoverable data structures.

7.3 Relationship to ACID

Three DL bug patterns can be disucssed using tradi-
tional database/filesystem’s ACID terms. One can view
Incompletely-Durable and Unrecovered-Durable bugs
as  ACID-atomicity/consistency/durability ~ violations
Incompletely-Durable bug pattern considers a crash after
DP and tests ACID-atomicity/consistency/durability’s fully-
executed “all” semantic. Unrecovered-Durable bug pattern
considers a crash before DP and tests ACID-atomicity’s
not-at-all-executed “nothing” semantic.

On the other hand, Visible-But-Not-Durable bug is related
to ACID-isolation violation. Visible-But-Not-Durable bug
pattern considers a crash before DP. However, a concurrent
operation observed unpersisted data, and it completed, vio-
lating ACID-isolation and forcing the crashed operation to
ensure the “all” semantic. A naive durability checker cannot
detect Visible-But-Not-Durable bugs because they require a
completed, ACID-isolation-violating, concurrent operation.

8 Evaluation

For evaluation, we first present our methodology (§8.1), then
present the following experimental results.

* We report and analyze the DL bugs detected by DURINN
(§8.2) along with detailed statistics, including the number
of tests and testing time (§8.3).

* We evaluate the effectiveness and (empirical) soundness of
DURINN’s likely-linearization inference technique (§8.4).

* We compare DURINN with other NVM crash-consistency
testing tools in terms of bug detection effectiveness and test
space reduction (§8.5).

Application Version Type Concurrency | Persistence
P-LF-BST [28] Sfaldee | binary search tree lock-free LL
P-LF-Hash [28] Sfaldee hash table lock-free LL
P-LF-List [28] Sfaldee linked list lock-free LL

P-LF-Skiplist [28] | Sfaldee skiplist lock-free LL
P-LF-Queue [29] 08fectb queue lock-free LL

CCEH [50] d53b336 hash table lock-based LL

Fast Fair [34] c86f5fb B+ tree lock-based LL

P-ART [44] Sb4cf3e radix tree lock-based LL

P-CLHT [44] 5bdct3e hash table lock-based LL

P-Hot [44] 5bdcf3e trie lock-based LL
P-Masstree [44] 5bdcf3e B tree + trie lock-based LL
pmdk-array [5] v1.8 array lock-based LL
pmdk-queue [6] v1.8 queue lock-based TX

LL: low-level persistence primitives TX: transactional persistence

Table 1: Tested concurrent NVM data structures

8.1 Evaluation Methodology

Tested NVM data structures. We evaluate DURINN with
13 concurrent NVM data structures, as listed in Table 1 with
tested version, data structure type, its concurrency control
mechanism, and persistence programming model. There are
two concurrency control mechanisms: lock-free and lock-
based. For persistence (durability) control, most data struc-
tures use low-level (LL) persistence primitives such as flush
and fence instructions, while pmdk-queue uses PMDK’s trans-
actional (TX) persistence programming model.

All the tested data structures have been highly optimized for
NVM, and most of them have shown to be more scalable than
(simple) NVM hash tables and B-trees used in NVM-backed
key-value stores such as memcached, redis, pmemkv, etc. All
tested data structures use libpmemobj, the PMDK library for
persistent memory allocation or transaction. As some data
structures originally used a volatile memory allocator and
emulated NVM using DRAM, we modified them to use the
PMDK’s persistent NVM memory allocator. Our changes do
not add or delete any new/existing persistence primitives, or
memory operations. Thus, the changes do not affect the bug
detection evaluation.

Test Cases. We use AFL++ fuzzer [1] to generate a test
case for our evaluation. We first feed a randomly generated
seed into ALF++ fuzzer. Our random seed generator assigns a
higher probability to create a new unused key for insert; and
to reuse existing keys for other dependent operations such as
delete, update, query. Then we run the fuzzer and picked
the generated test case with the highest code coverage, which
consists of 1,000 operations. We found that 1,000 operations
are large enough to achieve a reasonable and stable code
coverage (50%-80%) for our tested NVM data structures.
Missing code coverage is due to unused features (e.g., garbage
collection) and debugging codes. The generated test cases are
used for both likely-LP inference and adversarial testing.

Experimental setup. We ran all experiments on a 64-bit
Fedora 29 machine with two 16-core Intel Xeon Gold 5218
processors (2.30GHz), 192 GB DRAM, and 512 GB NVM.
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Name (Total #Bugs) | BugID | New Confirm Code Type Description Impact Fix strategy
P-LE-BST (1) 1 v v BSTAravindTraverse.h:331  DL1  Missing persistence primitives Points to garbage  add persistence primitives
P-LF-Hash (1) v v ListTraverse.h:212 DL1  Missing persistence primitives Points to garbage  add persistence primitives
P-LF-List (1) 3 v v ListTraverse.h:212 DL1  Missing persistence primitives Points to garbage  add persistence primitives
P-LF-Skiplist(1) 4 v v SkiplistTraverse.h:218 DL1  Missing persistence primitives Points to garbage  add persistence primitives
P-LF-Queue(1) 5 v v DurableQueue.h:L74 DL1 Missing persistence primitives Points to garbage  add persistence primitives
CCEH (2) 6 v CCEH_MSB.cpp:280 DL3  Incorrect concurrency control Lost key-value fix concurrency control/help persist
7 v CCEH_MSB.cpp:103 DL2  Atomicity in rehashing Unable to recover  inconsistency-recoverable design
FAST-FAIR (5) 8 v v btree.h:955,979 DL3  Incorrect concurrency control Lost key-value fix concurrency control/help persist
9 v v btree.h:955,1007 DL3 Incorrect concurrency control Lost key-value fix concurrency control/help persist
10 v btree.h:224 DL1  Missing persistence primitives Lost key-value add persistence primitives
11 v btree.h:213 DL2  Partial inconsistency is never recovered unable to recover  inconsistency-recoverable design
12 v btree.h:576 DL2  Atomicity in node splitting unable to recover  logging/transaction
P-ART (4) 13 v Tree.cpp:35,258 DL3  Incorrect concurrency control Lost key-value fix concurrency control/help persist
14 v Tree.cpp:35,384 DL3  Incorrect concurrency control Lost key-value fix concurrency control/help persist
15 v N16.cpp:15 DL2  Atomicity between metadata and key-value ~ Unable to recover — inconsistency-tolerable design [8]
16 v N4.cpp:17 DL2  Atomicity between metadata and key-value ~ Unable to recover  inconsistency-tolerable design [8]
P-CLHT (3) 17 v clht_lb_res.c:315,370 DL3  Incorrect concurrency control Lost key-value fix concurrency control/help persist
18 v clht_lb_res.c:315,468 DL3  Incorrect concurrency control Lost key-value fix concurrency control/help persist
19 v clht_lb_res.c:166 DL1  Missing persistence primitives Lost key-value add persistence primitives [9]
P-HOT (4) 20 v HOTRowex.hpp:61,84 DL3  Incorrect concurrency control Lost key-value fix concurrency control/help persist
21 v TwoEntriesNode.hpp:30 DL1  Missing persistence primitives Points to garbage  add persistence primitives [9]
22 v HOTRowexNode.hpp:315 DL1  Missing persistence primitives Points to garbage  add persistence primitives [9]
23 v HOTRowex.hpp:270 DL1  Missing persistence primitives Points to garbage  add persistence primitives [9]
P-Masstree (3) 24 v masstree.h:1837,744 DL3  Incorrect concurrency control Lost key-value fix concurrency control/help persist
25 v masstree.h:1837,941 DL3  Incorrect concurrency control Lost key-value fix concurrency control/help persist
26 v masstree.h:1378 DL2  Atomicity in node splitting Unable to recover  logging/transaction
pmdk-array (1) 27 v array.c:486 DL2  Atomicity between metadata and data Unable to recover  logging/transaxtion

DL1: Incompletely-Durable

DL2: Unrecovered-Durable

DL3: Visible-But-Not-Durable

Table 2: List of Durable Linearizability bugs detected by DURINN. In total, 27 (15 new) durable linearizability bugs were detected from 12
NVM data structures. There were 10 Incompletely-Durable bugs, 7 Unrecovered-Durable bugs, and 10 Visible-But-Not-Durable bugs.

#DL1 | #DL2 | #DL3 || Execution

App #stores | #LPs tests tests tests time
P-LF-BST 10086 656 656 656 46 1m26s
P-LF-Hash 4604 547 547 547 5 1m44s
P-LF-List 4604 547 547 547 1623 Tm1l5s

P-LF-Skiplist 26692 1040 1040 1040 491 4m3s
P-LF-Queue 9710 2000 2000 2000 7155 39m45s
CCEH 3631 1280 1280 1280 37 1m36s
Fast Fair 12989 10599 10599 | 10599 1585 8m37s
P-ART 12553 1112 1112 1112 287 2m34s

P-CLHT 2885 711 711 711 55 2mb6s
P-HOT 32600 640 640 640 420 3m35s
P-Masstree 1403 1058 1058 1058 984 4m58s
pmdk-array 20505 3097 3097 3097 0 4ml4s
pmdk-queue 57000 3000 3000 3000 0 2m51s

[ Total || 199262 | 26287 || 26287 | 26287 | 12688 || 1h23mI8s ||

DL1: Incompletely-Durable ~ DL2: Unrecovered-Durable
DL3: Visible-But-Not-Durable

Table 3: The detailed statistics of DURINN bug finding.

8.2 Detected Durable Linearizability Bugs

In summary, DURINN detected 27 (15 new) durable lineariz-
ability bugs from 12 NVM data structures. There were 10
Incompletely-Durable bugs, 7 Unrecovered-Durable bugs and
10 Visible-But-Not-Durable bugs. 7 out of 15 new bugs have
been confirmed by the developers so far. Table 2 shows the
source code locations, impacts and fix strategies of the de-
tected bugs.

(DL1) Incompletely-Durable bugs. DURINN detected 10
Incompletely-Durable bugs. Figure 6(a) discussed in §3.2
is a representative example (Bug ID 19) found in P-CLHT,
leading to a lost key-value. As another instance, in P-LF-List

(Bug ID 3), a new node is not fully persisted before it is added
to the list using a CAS operation (which is LP). If a crash
happens before DP (and after LP in this particular case), the
list may contain a garbage node leading to an inconsistent
structure. To fix Incompletely-Durable bugs, developers need
to persist all the changes using additional cache line flush and
fence instructions before DP.

(DL2) Unrecovered-Durable bugs. DURINN detected 7
Unrecovered-Durable bugs. Figure 6(b) illustrates a case
detected in Fast-Fair (Bug ID 12). For another example, in
CCEH (Bug ID 7), if a crash happens while rehashing the
table and before adding a new segment into the table, the
hash table will be in an illegal state: i.e., all the metadata
assumes there is a new segment added but it is not. To fix
Unrecovered-Durable bugs, an NVM data structure should be
able to recover from or tolerate partial updates before LP of
an operation. Designing an inconsistency-recoverable design
is one solution. Using logging or transaction is another.

(DL3) Visible-But-Not-Durable bugs. DURINN detected
10 Visible-But-Not-Durable bugs. Figure 6(c) shows a Visible-
But-Not-Durable bug in Fast-Fair (Bug ID 8). For another
example, Bug ID 6 from CCEH is due to incorrect usage
of locks. While both insert and get operations use a lock
to protect a critical section, the write to the synchronization
variable (LP) is inside the critical section but the persistence
of the synchronization variable (DP) is ensured outside the
critical section in insert. Since the DP is not protected by a
lock, the get operation is able to observe the visible but not
durable writes from a concurrent insert operation. We ob-
served two ways to fix Visible-But-Not-Durable bugs. Some
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choose to fix the concurrency control mechanism to guarantee
that every data read by concurrent threads is persisted. Others
made one operation that reads unpersisted data help persist
the data on behalf of another concurrent operation.

8.3 Statistics of DL Bug Detection

Table 3 shows the detailed statistics of DURINN when tested
with 1000 operations. The second column reports the number
of stores and the third column lists the number of inferred
likely linearization points. On average, using static analysis
described in §5.2, DURINN infers about 2,000 likely-LPs,
which is 13% of 15.3K NVM stores traced while running
1000 tested operations. More detailed analysis on likely-LP
inference will follow in §8.4.

The next three columns show the number of DL tests per-
formed by DURINN to detect three DL bug patterns. The num-
ber of Incompletely-Durable and Unrecovered-Durable tests
are the same as the number of inferred LPs because for each
LP, DURINN performs one adversarial test for Incompletely-
Durable bugs and for Unrecovered-Durable bugs. On the
other hand, the number of Visible-But-Not-Durable tests de-
pends on the number of co-schedulable racy operations. The
second last column shows that the number of Visible-But-
Not-Durable tests varies by data structures up to a few thou-
sand. Intuitively, lock-free data structures tend to have more
co-schedulable racy operations than (coarse-grained) lock-
based ones, requiring more tests. The last column reports
the execution time, which mostly depends on the number of
tests. Testing all three test cases typically takes a few minutes.
P-LF-Queue took the most time (around 40 mins) due to the
large number of concurrent Visible-But-Not-Durable testing.

Lastly, for each test case violating durable linearizability,
we manually analyze each case and report the details in Ta-
ble 2. DURINN provides sufficient information for root cause
analysis, including execution trace, crash location, persisted
and unpersisted writes, and a crash NVM image. We loaded
the crash image in gdb and followed the DURINN-generated
schedule to inspect the root causes of detected DL bugs.

8.4 Likely-Linearization Point Inference

DURINN infers likely-linearization points using Guarded-
Protection and Publish-after-Initialization heuristics de-
scribed in §5.2. The number of likely-LP determines the
number of DL tests that DURINN performs, so in terms of
scalability, the less the better. At the same time, ideally, likely-
LPs should not miss true LPs because missing LPs may lead
to missing true DL bugs (false negatives).

We performed a detailed case study with CCEH and Fast-
Fair in which we manually analyzed the true LPs (oracle)
for comparison. They both use lock-based concurrency con-
trol in which the store instructions serving as LPs are not
explicit. They are non-trivial concurrent data structures in-
cluding balancing operations such as rehashing (CCEH) and
node split/merge (Fast-Fair) operations.

Figure 11 shows the effectiveness of the proposed likely-

12989
Total Stores 12047

only Guarded-Protection 11112

only Publish-after-Initialization 1 10599
Durinn
Manual

voomn

5000

Number of LPs

3631

1923 1927
1280

i

CCEH Fast-Fair

Figure 11: A case study of likely-linearization point inference.

LP inference techniques, compared to the manually identified
LPs. The first bar represents the number of total stores. The
second and third bar represent the number of likely-LPs when
only Guarded-Protection or Publish-after-Initialization heuris-
tics is used, respectively. The fourth bar shows the number
of likely-LPs of DURINN where both are considered. The
last bar is the number of LPs from our manual source code
analysis. The result shows that DURINN effectively reduces
the number of likely-LPs using two heuristics. The number
of likely-LPs inferred by DURINN is twice as the number of
manually-identified LPs. Note that as listed in Table 3, CCEH
and Fast Fair are the most difficult data structures in terms of
the reduction ratio between the stores and the likely-LPs.

Additionally, we compared the bug detection effective-
ness and found that DURINN’s inferred likely-LPs detect the
same DL bugs as manually-identified (true) LPs. Though
DURINN’s likely-LP inference heuristics do not guarantee
soundness in theory, this experiment empirically shows that
likely-LP inference did not miss true LPs (at least) for the
CCEH and Fast-Fair. We believe the same case for other data
structures given that the heuristics are designed based on
common NVM programming patterns.

8.5 Comparison with Other Tools

We present the detailed comparison with Witcher [30], the
state-of-the-art NVM crash-consistency bug detector, and
Yat [43], an exhaustive crash-consistency testing tool.

Bug Detection. We compared the bug detection effectiveness
with Witcher. In their paper, Witcher claims that it can detect
all the crash-consistency bugs that prior tools (e.g., PMTest,
XFDetector and Agamotto) found for a common set of NVM
programs, along with some new bugs. For comparison, we
run Witcher with the same test case with 1000 operations
for six common data structures: CCEH, Fast-Fair, P-ART, P-
CLHT, P-HOT and P-Masstree. Both Witcher and DURINN
detected 11 bugs in common. Beyond them, DURINN reports
10 Visible-But-Not-Durable bugs that Witcher missed. De-
tecting Visible-But-Not-Durable bugs requires scheduling
concurrent operations, which is not supported by Witcher.

Test Space Reduction. We compare the number of tests
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Figure 12: Test space comparison.

performed by DURINN, Yat, and Witcher over the same 1000
operations. Figure 12 shows how the number of tests grows (y-
axis) as the number of tested operations increases (x-axis) for
four data structures: CCEH, Fast Fair, P-ART, and P-CLHT.
The other NVM data structures demonstrate a similar pattern.
Yat is an exhaustive testing tool, so the test space explodes
within the first ten operations. Witcher performs several times
more tests than DURINN. The sudden spike in P-CLHT is
due to a rehashing operation. On the other hand, DURINN
performs adversarial testing for three DL bug patterns, reduces
the number of tests, yet still detects more bugs than Witcher.

9 Related Work

File system/database Consistency Checking. File system
consistency checking [17, 18,32,41, 48, 49, 54, 57, 60-62]
deals with block-grained files, and logging/journaling is the
norm for crash consistency. On the other hand, DURINN deals
with concurrent data structures backed by byte-addressable
NVM. DURINN analyzes load/store instructions along with
cacheline flush and fence instructions, controlling durability
in NVM. NVM data structures often come with custom (log-
free) crash consistency and lock-free logic, making NVM
test space huge. For file systems, CrashMonkey [49] bounds
search space using heuristics learned from a bug study. EX-
PLODE [61] and FiSC [62] use in-situ model checking. In
contrast, DURINN reduces test space with adversarial crash
state and thread interleaving construction.

For correctness conditions, strict serializability and durable
linearizability are equivalent from the ACID properties per-
spective. (PMDK “transaction” does not provide “isolation”,
though). Yet, we believe durable linearizability is the appro-
priate framework to use as many NVM data structures are
derived from volatile concurrent data structures, where lin-
earizability is the norm. Others [28, 42] also use durable
linearizability. Equivalently, the asynchronous commit mech-
anism in database systems (Salt [59] and Hekaton [23]) can
be mapped to “buffered durable linearizability” [40]. For per-

formance, both do not eagerly make the changes durable as
long as they can resume from one of the old consistent states.

Linearizability Checker. Line-up [15] is the first complete
and automatic checker for deterministic linearizability. It
detects thread-safety violations by comparing the concur-
rent execution to linearizable executions of a test. Similarly,
Round-up [63] checks quasi linearizability. Quasi linearizabil-
ity intentionally introduces non-determinism into the parallel
computations and exploits such non-determinism to improve
the performance. Pradel et al. [53] detects concurrency bugs
in thread-safe classes. It generates tests in which multiple
threads call methods on a shared instance of the tested class
and check if the execution matches any linearizable execution.

Bug Detector for NVM Software. Most existing NVM bug
detectors are not designed for durable linearizability bugs.
PMDebugger [22] targets universal bugs such as missing per-
sistence primitives. To detect application-specific bugs, such
as persistence ordering/atomicity bugs, Yat [43], PMTest [46],
XFDetector [45] and Agamotto [51] require user-defined cus-
tom oracles or consistency checkers. Jaaru [31] only identifies
bugs that have visible manifestation, such as a segment fault
or an assertion failure. Witcher [30] leverages all or noth-
ing semantics for validation like DURINN, but it is limited to
single-threaded NVM programs.

Active Testing. AtomFuzzer [52] is a randomized active
atomicity violation detector, which modifies the thread sched-
uler behavior to create atomicity violations with high proba-
bility. RaceFuzzer [55] uses potential data race information
obtained from an existing dynamic analysis technique to con-
trol a random scheduler of threads for actively detecting race
conditions. Jumble [27] uses adversarial memory to classify
race conditions as destructive or benign on systems with re-
laxed memory models. Relaxer [16] detects sequential con-
sistency violations in a relaxed memory model by actively
leading execution to predicted violations.

10 Conclusion

We present DURINN, the first durable linearizability checker
for concurrent NVM data structures. We explore the gap be-
tween linearizability point and durability point, and define
three novel durable linearizability bug patterns. We propose
adversarial crash state and thread interleaving construction
and likely-linearization point inference to detect durable lin-
earizability bugs in an active and scalable manner. DURINN
detected 27 (15 new) durable linearizability bugs.
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