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• Race bug consist of two or more race pairs

• Must be executed in a specific order

• Difficult to succeed
• Two threads must be executed in order

• Bruteforce somehow works still
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Problem : Multi-Variable Race
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RACE CVE Bruteforce work?

CVE-2019-6974

CVE-2019-2025

CVE-2019-1999

CVE-2017-15265

✗

✗

✗

✗

CVE-2019-11486

CVE-2017-7533 

CVE-2017-2636 

CVE-2016-8655 

✔

✔

✔

✔

• We found several races are 
exploited with bruteforce

• However, some races cannot 
be exploited with brutefoce



• Some races are (practically) impossible to exploit
• If T1 < T2

Problem : Multi-Variable Race

Thread 1 Thread 2
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Access to memory M1
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Goal: How do we exploit Multi-variable Race?

Idea: Extend the time window to make |T1 + TExtend| is larger than T2
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Idea: Extending the time window?
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Preempting the thread execution
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Typical preemption methods
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Kernel breakpoint Kernel thread
schedule

interrupt



Challenge: 
Preemption is not under user’s control

Kernel breakpoint Kernel thread
schedule

Back to OS basics:
Users cannot control preemption methods 9

interrupt



User-controlled Preemption through Interrupts

interrupt
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Fact: Users CANNOT raise interrupts directly

We found that users CAN raise 
interrupts indirectly



User-controlled Preemption through Interrupts
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We found four methods to indirectly raise interrupts

• Reschedule interrupt • Membarrier interrupt

• TLB shootdown interrupt • Hardware interrupt

memory



Requirement: Precise Interrupt Control
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We should send an interrupt to a desired CPU core!

• Reschedule interrupt

CPU pinning

• Hardware interrupt
CPU pinning

• Membarrier interrupt

Same memory map

mm mm

• TLB shootdown interrupt

Same memory map

mm mm



Our Approach : Interrupt

• The key insight behind EXPRACE is in intentionally 
enlarging race window using interrupt.
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yoochan@compsec:~$ cat  /proc/irq/121/smp_affinity_list
> 

Example : Hardware Interrupt
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Real-World Races in Linux
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✗ denotes exploitation has failed for given 24 hours

Vulnerability

CVE-2019-6974
CVE-2019-2025
CVE-2019-1999
CVE-2017-15265

11eb85ec…
1a6084f8…
20f2e4c2…
484298f…
da1b9564…
e20a2e9c…

Baseline Reschedule membarrier TLB shootdown HW interrupt

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

All 10 cases are exploited with EXPRACE



Other OSes

• Reschedule and TLB shootdown has shown far more 

success numbers than baseline.
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Microsoft Windows Mac OS X



Conclusion

• We analyzed real-world kernel races and found an intrinsic 

condition separating easy-to-exploit and hard-to-exploit races. 

• We developed EXPRACE, a generic race exploitation technique 

for Linux, Windows, OS X. 

• EXPRACE demonstrated that it truly augments the exploitability 

of kernel races. 

17


