
EXPRACE: Exploiting Kernel Races
through Raising Interrupts

Yoochan Lee†, Changwoo Min‡, Byoungyoung Lee†

Seoul National University†, Virginia Tech‡

1

Race Condition

2

Thread 1 Thread 2

R read M

W M = 1

Thread 1 Thread 2

R read M

W M = 1

Initial state

M = 0

Different execution order
è Different execution results!

M=1

M=0

Execution 1 Execution 2

Thread 2

R

W

R

Time
Window

3

• Race bug consist of two or more race pairs

• Must be executed in a specific order

• Difficult to succeed
• Two threads must be executed in order

• Bruteforce somehow works still

WR

R

Time
Window

Thread 1 Thread 2

Race Condition Bug

R

UAF, OOB, etc

Failed!

Failed!

Succeed!

Problem : Multi-Variable Race

4

RACE CVE Bruteforce work?

CVE-2019-6974

CVE-2019-2025

CVE-2019-1999

CVE-2017-15265

✗

✗

✗

✗

CVE-2019-11486

CVE-2017-7533

CVE-2017-2636

CVE-2016-8655

✔

✔

✔

✔

• We found several races are
exploited with bruteforce

• However, some races cannot
be exploited with brutefoce

• Some races are (practically) impossible to exploit
• If T1 < T2

Problem : Multi-Variable Race

Thread 1 Thread 2

5

Access to memory M1

Access to memory M2

CVE T1 T2
CVE-2019-6974

CVE-2019-2025

CVE-2019-1999

CVE-2017-15265

18 1210

50 600

150 1800

45035D

A

C

B

T1 T2

Goal: How do we exploit Multi-variable Race?

Idea: Extend the time window to make |T1 + TExtend| is larger than T2
6

T1

T2

Core 2Core 1

A

D

B

C
|T1|<|T2|

T1

T2

Core 2Core 1

A

D

B

C
TExtend

|T1+TExtend|>|T2|

Idea: Extending the time window?

7

Preempting the thread execution

T1
+

TExtend

T2

Core 2Core 1

A

D

B

C

TExtend

Typical preemption methods

8

Kernel breakpoint Kernel thread
schedule

interrupt

Challenge:
Preemption is not under user’s control

Kernel breakpoint Kernel thread
schedule

Back to OS basics:
Users cannot control preemption methods 9

interrupt

User-controlled Preemption through Interrupts

interrupt

10

Fact: Users CANNOT raise interrupts directly

We found that users CAN raise
interrupts indirectly

User-controlled Preemption through Interrupts

11

We found four methods to indirectly raise interrupts

• Reschedule interrupt • Membarrier interrupt

• TLB shootdown interrupt • Hardware interrupt

memory

Requirement: Precise Interrupt Control

12

We should send an interrupt to a desired CPU core!

• Reschedule interrupt

CPU pinning

• Hardware interrupt
CPU pinning

• Membarrier interrupt

Same memory map

mm mm

• TLB shootdown interrupt

Same memory map

mm mm

Our Approach : Interrupt

• The key insight behind EXPRACE is in intentionally
enlarging race window using interrupt.

13

Core 1Core 0 Core 2

A

C

B

Syscall()
(related to
attack method)

Send interrupt
to Core 1

D

T1

T2
T1
+

TExtend
Interrupt
HandlerTExtend

yoochan@compsec:~$ cat /proc/irq/121/smp_affinity_list
>

Example : Hardware Interrupt

14

Core 7

Core 0 Core 2

A

C

B
sk = socket()
connect(sk)

Send interrupt
to Core 1

D

T1

TExtend
T2

T1
+

TExtend
IRQ

Handler

Real-World Races in Linux

15

✗ denotes exploitation has failed for given 24 hours

Vulnerability

CVE-2019-6974
CVE-2019-2025
CVE-2019-1999
CVE-2017-15265

11eb85ec…
1a6084f8…
20f2e4c2…
484298f…
da1b9564…
e20a2e9c…

Baseline Reschedule membarrier TLB shootdown HW interrupt

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✗

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

All 10 cases are exploited with EXPRACE

Other OSes

• Reschedule and TLB shootdown has shown far more

success numbers than baseline.

16

Microsoft Windows Mac OS X

Conclusion

• We analyzed real-world kernel races and found an intrinsic

condition separating easy-to-exploit and hard-to-exploit races.

• We developed EXPRACE, a generic race exploitation technique

for Linux, Windows, OS X.

• EXPRACE demonstrated that it truly augments the exploitability

of kernel races.

17

