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Here is Serverless Computing!

® Serverless computing is now mainstream in the cloud era

® Amazon Lambda, Microsoft Azure, Google Cloud, IBM Cloud Functions
provide their serverless computing models

e Developers do not need to effort into administration
e |t offers significant scalability for the resource provisioning

® The serverless introduces pay-as-you-go
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What is Serverless Computing?

® Application can consist of small serverless functions
® Serverless computing is Function-as-a-Service (FaaS)
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What is Serverless Computing?

® Inside the serverless, each function runs in its own sandbox

® Cloud operator manages functions flexibly for users
e In function, most used languages and runtime(90%) is interpreter language
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Characteristics of Serverless Computing

e On-demand execution
O The resources for functions are created on-demand when invoked

e Shorter execution time
O  Functions on the serverless run in a short span

e Cloud operators aim to consolidate a large number of serverless functions in a
few machines to utilize server’s resources more efficiently



Problems

(1) Long startup time penalty
® Long booting time of VM, OS, container and runtime
e 1strequest = cold start, subsequent requests = warm start(can be expired)
® In some cases, startup time > execution time of function

(2) Unpredictability in Just-In-Time(JIT) compilation of interpreter language
e Short execution time of the function is not suitable for JIT compilation

(3) Memory is bottleneck in the consolidation
® Cloud operators retain the functions in memory for a while waiting

(4) Security challenge

e High consolidated serverless environment needs robust isolation
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Our approach
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Our approach : VM-level post-JIT snapshot

Installation phase : create a memory snapshot with JIT compilation
Invocation phase : load the memory snapshot on a sandbox as a new function
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Challenges

® Installation phase
o How can we manipulate JIT compilation?

o Do we know when creating a snapshot?

® Invocation phase
o How we can reduce a memory footprint?
o How to solve the problem of duplicated IP and MAC using the same snapshot?
o How can we pass multiple users’ arguments to the same running state of a

memory snapshot?
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Our solution : FIREWORKS

We suggest FIREWORKS, a way to solve the challenges and realize a post-JIT snapshot
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How can we manipulate JIT compilation?

Use source code annotation
e Modern highly-optimized language runtimes already support annotation to
trigger JIT at the program loading time.
® We re-purpose this feature to create a post-JIT VM-level snapshot

function optfn() { @jit (cache=True)
try { def f (%, y):
%OptimizeFunctionOnNextCall (main) ; return x + vy

}
catch (e) {
console.log(e) ;

}

}

Node.js Python
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Do we know when to create a snapshot?

Place a trigger of making a snapshot in user code

® Only a function knows that the code is optimized and ready to run, rather than

the environment that manages it

FIREWORKS

Annotated function

Request to make a snapshot
(HTTP request)
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Python, Nodejs runtime

Import package

@jit(cache=True)
def main(params):

Snapshot_request()

-
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How we can reduce memory footprint?

Redefine Running a function as loading a memory snapshot file
e Sandbox #1 runs by loading the memory snapshot file
e Sandbox #2 can share the memory in a copy-on-write manner
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"How to solve the problem of duplication IP and
MAC using the same snapshot?

the same snapshot file

Take advantage of MMDS, iptables
NAT and network namespace JL JL

Firecracker
hostname-A hostname-B

e MicroVM metadata service MMDS

(MMDS) inserts unique @ @

information of the microVM iptables atatala BB 202
® iptables NAT map the same ip

to different exposed IP Network netl:tap0 net2:tap0
e conflict for the same device. namespace @ @

= own network namespace. V V
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How can we pass multiple users’ arguments to
the same running state of a memory snapshot?

Create a repository that can be delivered between users and functions in the sandbox,

and add logic to check it

Parameter passer
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'FIREWORKS

High isolation level

Fast execution

Code annotation

Argument passing

Request snapshot from a function

Multiple sandboxes from one memory snapshot

Low-latency start up

Memory efficiency
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Implementation & Evaluation Methodology

Implementation

Firecracker v0.24.0

3,000 lines of Bash code for microVM manager, Invoker, Code annotator

500 lines of Node.js, Python for Snapshotter, Parameter passer

40 lines of C++ for Node.js V8 Source

17,480 lines of Node.js, Python borrowed code with modification from FaasDom
and SeverlessBench Benchmark

Evaluation Methodology

FaaSdom Benchmark+:1 represents basic performance in serverless
ServerlessBench~. measures the real-world serverless application performance

*1 [DEBS20] Faasdom: a benchmark suite for serverless computing

*2 [SoCC20] Characterizing serverless platforms with serverlessbench.
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Evaluation

® How much can FIREWORKS reduce start-up time and function execution time of
various serverless applications?

e How effective are FIREWORKS’s design choices (VM-level snapshot, post-JIT
snapshot) in improving performance and saving memory usage?

® How much memory can Fireworks save by sharing memory snapshots across
sandboxes?
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Microbenchmark : Python
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Memory Usage

e FIREWORKS can make 565 sandboxes, and Firecracker can make 337 sandboxes

without the swap memory

e |t allows FIREWORKS to consolidate 167% more sandbox than Firecracker

memory usage (MB)
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Conclusion

e Seeking a safe, efficient, high performance serverless framework continues.

e FIREWORKS can get all three:

Safe High performance Efficiency

e We designed, implemented, and evaluated new serverless framework by using
VM-level snapshots and JIT-based snapshots
o 20 time shorter (cold) startup time, 7 times lower memory footprint
o The achievements give a guidance to utilize JIT and Snapshot in the
serverless computing.
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