
FIREWORKS: A Fast, Efficient, and Safe
Serverless Framework using VM-level
post-JIT Snapshot

Wonseok Shin1, Wook-Hee Kim2 ,Changwoo Min3

1SK Telecom, 2Konkuk University, 3Virginia Tech

1

● Serverless computing is now mainstream in the cloud era

● Amazon Lambda, Microsoft Azure, Google Cloud, IBM Cloud Functions

provide their serverless computing models

● Developers do not need to effort into administration

● It offers significant scalability for the resource provisioning

● The serverless introduces pay-as-you-go

2

Here is Serverless Computing!

● Application can consist of small serverless functions

● Serverless computing is Function-as-a-Service (FaaS)

3

What is Serverless Computing?

Application

Micro service 1

Micro service 2

Micro service 3

sandbox

4

What is Serverless Computing?

Server

Operating System

Hypervisor

sandbox

● Inside the serverless, each function runs in its own sandbox

● Cloud operator manages functions flexibly for users

● In function, most used languages and runtime(90%) is interpreter language

sandbox sandbox

sandbox sandbox

* serverless benchmark report AWS lambda 2020

5

Characteristics of Serverless Computing

● On-demand execution

○ The resources for functions are created on-demand when invoked

● Shorter execution time

○ Functions on the serverless run in a short span

● Cloud operators aim to consolidate a large number of serverless functions in a

few machines to utilize server’s resources more efficiently

(1) Long startup time penalty

● Long booting time of VM, OS, container and runtime

● 1st request = cold start, subsequent requests = warm start(can be expired)

● In some cases, startup time > execution time of function

6

Problems

(2) Unpredictability in Just-In-Time(JIT) compilation of interpreter language

● Short execution time of the function is not suitable for JIT compilation

(3) Memory is bottleneck in the consolidation

● Cloud operators retain the functions in memory for a while waiting

(4) Security challenge

● High consolidated serverless environment needs robust isolation

7

Our approach

Low-latency start up time

Fast execution time

Snapshot

Post-JIT Snapshot

Memory efficiency Sharing Post-JIT Snapshot

Robust isolation Sharing VM-level Post-JIT Snapshot

8

Our approach : VM-level post-JIT snapshot

Installation phase : create a memory snapshot with JIT compilation

Invocation phase : load the memory snapshot on a sandbox as a new function

User code

JIT Compilation

sandbox

runtime

library

JITed code

Create
memory
snapshot

Machine code

Installation phase Invocation phase

Load
memory
snapshot

sandbox

sandbox

sandbox

sandbox

● Installation phase

○ How can we manipulate JIT compilation?

○ Do we know when creating a snapshot?

● Invocation phase

○ How we can reduce a memory footprint?

○ How to solve the problem of duplicated IP and MAC using the same snapshot?

○ How can we pass multiple users’ arguments to the same running state of a

memory snapshot?

9

Challenges

MicroVM Manager

Snapshotter

Code annotator

Sandbox

We suggest FIREWORKS, a way to solve the challenges and realize a post-JIT snapshot

10

Our solution : FIREWORKS

FIREWORKS

10

Invoker

Parameter passer
Server

Operating System

User code
</>

@RequestJIT(function name)

Snapshot_request()

JITed User code
</>

function optfn() {
 try {
 %OptimizeFunctionOnNextCall(main);
 }
 catch (e) {
 console.log(e);
 }
}

11

Use source code annotation

● Modern highly-optimized language runtimes already support annotation to

trigger JIT at the program loading time.

● We re-purpose this feature to create a post-JIT VM-level snapshot

@jit(cache=True)
def f(x, y):
 return x + y

Node.js Python

How can we manipulate JIT compilation?

12

Place a trigger of making a snapshot in user code

● Only a function knows that the code is optimized and ready to run, rather than

the environment that manages it

FIREWORKS Annotated function

Do we know when to create a snapshot?

Request to make a snapshot
(HTTP request)

Python, Nodejs runtime

Import package

@jit(cache=True)
def main(params):

Snapshot_request()

13

Redefine Running a function as loading a memory snapshot file

● Sandbox #1 runs by loading the memory snapshot file

● Sandbox #2 can share the memory in a copy-on-write manner

How we can reduce memory footprint?

Requests

MicroVM

OS
Library Runtime

JITed

code

Physical

memory

MicroVM

OS
Library Runtime

JITed

code
State1

Sandbox #1

MicroVM

OS
Library Runtime

JITed

code
State2

Sandbox #2

Create snapshot

Load snapshot

Snapshot file

Copy-on-write

Load snapshot

Firecracker

MMDS

iptables

Network

namespace

14

Take advantage of MMDS, iptables

NAT and network namespace

● MicroVM metadata service

(MMDS) inserts unique

information of the microVM

● iptables NAT map the same ip

to different exposed IP

● conflict for the same device.

⇒ own network namespace.

How to solve the problem of duplication IP and
MAC using the same snapshot?

the same snapshot file

A.A.A.A B.B.B.B

Sandbox #1 Sandbox #2

hostname-A hostname-B

net1:tap0 net2:tap0

15

Create a repository that can be delivered between users and functions in the sandbox,

and add logic to check it

Sandbox #3

Sandbox #N queue
...

Sandbox #1 queue

Sandbox #2 queue

Sandbox #3 queue

How can we pass multiple users’ arguments to
the same running state of a memory snapshot?

Insert user’s

arguments

Parameter passer

Code annotation

Argument passing

Request snapshot from a function

Multiple sandboxes from one memory snapshot

16

FIREWORKS

VM-level Post-JIT Snapshot

High isolation level

Fast execution

Low-latency start up

Memory efficiency

Implementation & Evaluation Methodology

17

Implementation

● Firecracker v0.24.0

● 3,000 lines of Bash code for microVM manager, Invoker, Code annotator

● 500 lines of Node.js, Python for Snapshotter, Parameter passer

● 40 lines of C++ for Node.js V8 Source

● 17,480 lines of Node.js, Python borrowed code with modification from FaasDom

and SeverlessBench Benchmark

*1 [DEBS20] Faasdom: a benchmark suite for serverless computing
*2 [SoCC20] Characterizing serverless platforms with serverlessbench.

Evaluation Methodology

● FaaSdom Benchmark*1 represents basic performance in serverless

● ServerlessBench*2 measures the real-world serverless application performance

18

● How much can FIREWORKS reduce start-up time and function execution time of

various serverless applications?

● How effective are FIREWORKS’s design choices (VM-level snapshot, post-JIT

snapshot) in improving performance and saving memory usage?

● How much memory can Fireworks save by sharing memory snapshots across

sandboxes?

Evaluation

19

Microbenchmark : Python
write read

faas-fact faas-matrix-mult faas-diskio faas-netlatency

20

• FIREWORKS can make 565 sandboxes, and Firecracker can make 337 sandboxes

without the swap memory

• It allows FIREWORKS to consolidate 167% more sandbox than Firecracker

Memory Usage

● Seeking a safe, efficient, high performance serverless framework continues.

● FIREWORKS can get all three:

● We designed, implemented, and evaluated new serverless framework by using

VM-level snapshots and JIT-based snapshots

○ 20 time shorter (cold) startup time, 7 times lower memory footprint

○ The achievements give a guidance to utilize JIT and Snapshot in the

serverless computing.

21

Conclusion

VM-level Post-JIT Snapshot

Safe High performance Efficiency

