<EURO/SYS'22>

FIREWORKS: A Fast, Efficient, and Safe
Serverless Framework using VM-level
post-JIT Snapshot

Wonseok Shin', Wook-Hee Kim? ,Changwoo Min?

18K Telecom, 2Konkuk University, *Virginia Tech
VIRGINIA TECH

1

Here is Serverless Computing!

® Serverless computing is now mainstream in the cloud era

® Amazon Lambda, Microsoft Azure, Google Cloud, IBM Cloud Functions
provide their serverless computing models

e Developers do not need to effort into administration
e |t offers significant scalability for the resource provisioning

® The serverless introduces pay-as-you-go

r .
What is Serverless Computing?

® Application can consist of small serverless functions
® Serverless computing is Function-as-a-Service (FaaS)

Application

Micro service 1

Micro service 2

Micro service 3 @ @

What is Serverless Computing?

® Inside the serverless, each function runs in its own sandbox

® Cloud operator manages functions flexibly for users
e In function, most used languages and runtime(90%) is interpreter language

O O D

sandbox sandbox sandbox

O @ @

sandbox sandbox sandbox
@ .Net Core

HyperVisor \ @® Go
Java
- Node.js

. o \~ Python
Operating System 52.9% ® Ruby

36.0%

Server
* serverless benchmark report AWS lambda 2020

Characteristics of Serverless Computing

e On-demand execution
O The resources for functions are created on-demand when invoked

e Shorter execution time
O Functions on the serverless run in a short span

e Cloud operators aim to consolidate a large number of serverless functions in a
few machines to utilize server’s resources more efficiently

Problems

(1) Long startup time penalty
® Long booting time of VM, OS, container and runtime
e 1strequest = cold start, subsequent requests = warm start(can be expired)
® In some cases, startup time > execution time of function

(2) Unpredictability in Just-In-Time(JIT) compilation of interpreter language
e Short execution time of the function is not suitable for JIT compilation

(3) Memory is bottleneck in the consolidation
® Cloud operators retain the functions in memory for a while waiting

(4) Security challenge

e High consolidated serverless environment needs robust isolation

-
Our approach

[Low-latency start up time } |:> Snapshot

4)

Fast execution time I:> Post-JIT Snapshot
- J
4 2

Memory efficiency I:> Post-JIT Snapshot
- J

[Robust isolation } E— VM-level Post-JIT Snapshot
_

7

Our approach : VM-level post-JIT snapshot

Installation phase : create a memory snapshot with JIT compilation
Invocation phase : load the memory snapshot on a sandbox as a new function

Installation phase Invocation phase

User code

00000b0 e8f7 sandbox

Create Load sandbox
JIT Compilation memory Lo memory
JITed code snapshot | ! snapshot @
Lo >
Machine code ko1 . sandbox
0000060 1819 library '
0000070 7b7a Lo N
0000080 8888) b sandbox
0000090 5788 runtime B
0000020 7abd Do

Challenges

® Installation phase
o How can we manipulate JIT compilation?

o Do we know when creating a snapshot?

® Invocation phase
o How we can reduce a memory footprint?
o How to solve the problem of duplicated IP and MAC using the same snapshot?
o How can we pass multiple users’ arguments to the same running state of a

memory snapshot?

-
Our solution : FIREWORKS

We suggest FIREWORKS, a way to solve the challenges and realize a post-JIT snapshot

FIREWORKS

Sandbox

'
|
|
|

MicroVM Manager

Code annotator

Snapshotter

| Invoker |
d Parameter passer |}

-

@RequestJIT(function name)

JITed User code
<[>

Snapshot_request()

Operating System

Server

10

10

How can we manipulate JIT compilation?

Use source code annotation
e Modern highly-optimized language runtimes already support annotation to
trigger JIT at the program loading time.
® We re-purpose this feature to create a post-JIT VM-level snapshot

function optfn() { @jit (cache=True)
try { def f (%, y):
%OptimizeFunctionOnNextCall (main) ; return x + vy

}
catch (e) {
console.log(e) ;

}

}

Node.js Python

11

-
Do we know when to create a snapshot?

Place a trigger of making a snapshot in user code

® Only a function knows that the code is optimized and ready to run, rather than

the environment that manages it

FIREWORKS

Annotated function

Request to make a snapshot
(HTTP request)

-

\4

Python, Nodejs runtime

Import package

@jit(cache=True)
def main(params):

Snapshot_request()

-
12

r .
How we can reduce memory footprint?

Redefine Running a function as loading a memory snapshot file
e Sandbox #1 runs by loading the memory snapshot file
e Sandbox #2 can share the memory in a copy-on-write manner

Load snapshot Load snapshot
3 ~—
Sandbox #1 é Sandbox #2 é
MicrovM Librar Runtime iTed Statel MicrovM Librar Runtime iTed State2
oS y code 0s y code

______________________________________._________________:-‘ __

MlcroVM Librar Runtime Ted
oS Y code

é Create snapshot

Requests) E Snapshot file

"How to solve the problem of duplication IP and
MAC using the same snapshot?

the same snapshot file

Take advantage of MMDS, iptables
NAT and network namespace JL JL

Firecracker
hostname-A hostname-B

e MicroVM metadata service MMDS

(MMDS) inserts unique @ @

information of the microVM iptables atatala BB 202
® iptables NAT map the same ip

to different exposed IP Network netl:tap0 net2:tap0
e conflict for the same device. namespace @ @

= own network namespace. V V

Sandbox #1 Sandbox #2

14

How can we pass multiple users’ arguments to
the same running state of a memory snapshot?

Create a repository that can be delivered between users and functions in the sandbox,

and add logic to check it

Parameter passer

Sandbox #1 queue Sandbox #3

Sandbox #2 queue .

Insert user’s (T T 71711
arguments Sandbox #3 queue / @

Sandbox #I'\i.queue

'FIREWORKS

High isolation level

Fast execution

Code annotation

Argument passing

Request snapshot from a function

Multiple sandboxes from one memory snapshot

Low-latency start up

Memory efficiency

16

Implementation & Evaluation Methodology

Implementation

Firecracker v0.24.0

3,000 lines of Bash code for microVM manager, Invoker, Code annotator

500 lines of Node.js, Python for Snapshotter, Parameter passer

40 lines of C++ for Node.js V8 Source

17,480 lines of Node.js, Python borrowed code with modification from FaasDom
and SeverlessBench Benchmark

Evaluation Methodology

FaaSdom Benchmark+:1 represents basic performance in serverless
ServerlessBench~. measures the real-world serverless application performance

*1 [DEBS20] Faasdom: a benchmark suite for serverless computing

*2 [SoCC20] Characterizing serverless platforms with serverlessbench.

17

Evaluation

® How much can FIREWORKS reduce start-up time and function execution time of
various serverless applications?

e How effective are FIREWORKS’s design choices (VM-level snapshot, post-JIT
snapshot) in improving performance and saving memory usage?

® How much memory can Fireworks save by sharing memory snapshots across
sandboxes?

18

-
Microbenchmark : Python

write read

g | I
536370011 1 2 3 12 o —

«‘/. i o_
\ 7 8 9 7 8 9 - o —
/2“)\'()\ T e S—

| »

faas-fact faas-matrix-mult faas-diskio
14000 ~ 1800 ~ 20000 ~ 2 1600
start-up - : 1600 + 18000 |- others mmmmm
12000 | 1400 L 16000 |- iggg
—~ 10000 14000 |
~ 1200 | 1000
£ 8000 - - . i 12000 +
E 1000
10000 - 800
% 6000 |- 800 |- -
g 8000 600
2 4000 L 600 6000 00
400 |- 4000 - 4
2000 - © 200 - 2000 | 200
0 0 0
cw c¢w c¢w both cw c¢cw c¢w both cw c¢w c¢w both cw c¢cw c¢w both

kS et (kS A% (J3s0% C\ge ot

A is0f ket ks K 3808 ket 9K 30k s
O?e“\ﬂ\‘ %\Igfﬁ ecraigend O?e“\}]‘(\‘ %\I?{e 2 W O?e“\}l\\ %\1%5“6 o / O?e“\ﬂ\‘ N e yw

Memory Usage

e FIREWORKS can make 565 sandboxes, and Firecracker can make 337 sandboxes

without the swap memory

e |t allows FIREWORKS to consolidate 167% more sandbox than Firecracker

memory usage (MB)

35000
30000
25000
20000
15000
10000

5000

—
o< &
a EA
j o
J.’I.
1 8
LR ol
,E . FIREWORKS —ji} -
g I/. Firecracker - {7} -
|

| | | | J

100 200 300 400 500 600
sandboxes

20

[.
Conclusion

e Seeking a safe, efficient, high performance serverless framework continues.

e FIREWORKS can get all three:

Safe High performance Efficiency

e We designed, implemented, and evaluated new serverless framework by using
VM-level snapshots and JIT-based snapshots
o 20 time shorter (cold) startup time, 7 times lower memory footprint
o The achievements give a guidance to utilize JIT and Snapshot in the
serverless computing.

21

