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Abstract
We propose OmniCache, a novel caching design for near-

storage accelerators that combines near-storage and host mem-
ory capabilities to accelerate I/O and data processing. First,
OmniCache introduces a “near-cache” approach, maximiz-
ing data access to the nearest cache for I/O and processing op-
erations. Second, OmniCache presents collaborative caching
for concurrent I/O and data processing by using host and de-
vice caches. Third, OmniCache incorporates a dynamic model-
driven offloading support, which actively monitors hardware
and software metrics for efficient processing across host and
device processors. Finally, OmniCache explores the extensi-
bility for newly-introduced CXL, a memory expansion tech-
nology. OmniCache demonstrates significant performance
gains of up to 3.24X for I/O workloads and 3.06X for data
processing workloads.

1 Introduction
The growth in data volume and demand for high-

performance data processing is driving innovative storage
architectures. Traditional approaches with centralized pro-
cessing and frequent data movement face performance limita-
tions and high costs [9, 10, 44]. To address this, vendors have
introduced near-storage data processing devices, bringing pro-
cessing capabilities closer to storage [11, 15, 28]. These archi-
tectures leverage accelerators and host processors to enhance
processing power and potentially reduce data movement and
associated overheads. Realizing these benefits requires effec-
tive management and utilization of these resources. State-of-
the-art near-storage designs have explored various approaches
to accelerate I/O and data processing. These include using
storage as a raw block device [33], developing near-storage
key-value stores [13, 17, 24, 34], and creating near-storage
file systems [9, 21, 31]. Additionally, application-customized
techniques have been proposed [37, 39].

Utilizing memory buffers on near-storage accelerators is
crucial for mitigating the impact of higher storage latency and
limited bandwidth. Near-storage memory offers advantages
such as localization and high bandwidth, making it an advan-

tageous buffering medium near computational units. However,
near-storage memory capacity is typically smaller than tradi-
tional host-level RAM, as demonstrated by prior studies and
commercial products [11, 15]. Therefore, effective techniques
that collaboratively use device and host-level memory and
processors become crucial, minimizing data movement be-
tween storage and host layers, resulting in accelerated data
processing and regular I/O operations (e.g., read, write).

While state-of-the-art near-storage designs improve I/O
or data processing performance, they either lack any mem-
ory caching support [9, 31, 33] or fail to exploit device-
level memory in collaboration with host-level memory for
caching [17, 24, 44]. The absence of caching support or the
failure to exploit near-storage memory for I/O and data pro-
cessing increases storage access and data movement between
the host and the device (e.g., fetching a 4KB block for a 1KB
application request). Similarly, the absence of a collaborative
host and device memory caching causes applications to stall
due to cache eviction delays. Finally, prior designs use simplis-
tic metrics to offload data processing (e.g., computing power)
without considering storage-centric metrics (e.g., data distri-
bution, I/O-to-processing ratio, data movement bandwidth,
and queuing costs), leading to suboptimal performance.

To tackle the challenges above, we propose OmniCache, a
cross-layered system software design that exploits the com-
bined capabilities of near-storage accelerators, host CPUs, and
their memory (DRAM) resources to accelerate I/O and data
processing. At its heart, OmniCache introduces a novel princi-
ple, "near-cache", which focuses on maximizing data access
on the closest cache, effectively combining the strengths of
the host (such as higher memory capacity and more CPUs)
and the device (being nearer to the storage) while mitigating
their limitations. OmniCache employs a horizontal paradigm
where application threads can concurrently store and access
data from the host and the device caches, thereby improv-
ing the aggregate bandwidth and data access latency. Toward
designing OmniCache, we make the following contributions:
Near-cache I/O: Firstly, we optimize I/O performance using
a near-cache mechanism that simultaneously utilizes host-
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level cache (HostCache) and device cache (DevCache). This
near-cache approach maximizes cache utilization for various
I/O access patterns, transferring only the data sizes requested
by an application thread instead of the entire block from
storage to the host.
Collaborative Caching for Concurrent I/O: Unlike hierar-
chical caching approaches where threads must wait for cache
eviction to complete when a cache (e.g., HostCache) is full,
OmniCache’s horizontal paradigm allows threads to update
the other cache (e.g., DevCache) until the eviction is complete
and reduces application stalls. To locate data stored in these
caches or on the disk, we introduce a scalable, host-managed
indexing mechanism known as OmniIndex. OmniIndex uti-
lizes a per-file interval tree equipped with a fine-grained range
lock, enabling threads to access both the host and device
caches concurrently for non-conflicting blocks [7].
Collaborative Processing with Dynamic Offloading: Sec-
ond, we develop a dynamic offloading mechanism driven by
an offloading model to accelerate data processing by lever-
aging HostCache and DevCache collaboratively. The mecha-
nism enables concurrent data processing across the host and
the devices and uses the caches to buffer the intermediate pro-
cessing state. Beyond simple processing (e.g., data checksums
and compression), we develop support for complex processing
operations (e.g., K-nearest neighbor search).
Exploiting CXL.mem Capabilities: Finally, to demonstrate
the adaptability of OmniCache beyond conventional NVMe-
based near-storage, we exploit byte-addressable Compute Ex-
press Links (CXL) [1] with memory expansion capabilities
(CXL.mem) to coordinate between host and device caches,
reduce data movement costs and queuing delays.
End-to-end Evaluation: We evaluate OmniCache with mi-
crobenchmarks and real-world applications, including Lev-
elDB [3] and K-Nearest Neighbor search [32]. OmniCache’s
near-cache I/O principle, collaborative use of DevCache and
HostCache for concurrent I/O and to dynamically offload
processing functions provide significant performance gains.
Compared to the state-of-the-art near-storage file systems
without caching [9] and those with host-only caching [44],
OmniCache achieves 3.24X and 1.52X performance gains,
respectively. Application write stalls are reduced by up to
2×. The collaborative approach to concurrently process data
across the host and the device provides up to 3.06X gains over
state-of-the-art FusionFS [9]. Finally, LevelDB [3] and data-
intensive KNN [32] show up to 5.15X gains, highlighting the
practical benefits of OmniCache.

2 Background and Motivation
We first present the background and related work on near-

storage data processing and caching, followed by their limita-
tions and analysis that motivates OmniCache design.
2.1 Background and Related Work

We now review prior near-storage processing studies in
terms of (1) hardware trends, (2) software advancements, (3)

near-storage file systems and OS support for data processing,
and finally, (4) in-memory caching for storage.
Hardware Near-storage Processing Trends: Despite ad-
vancements in SSD and NVM technologies, data access and
movement overheads remain dominant in I/O stacks. To
address these overheads, hardware manufacturers are en-
hancing storage-level compute resources in near-storage pro-
cessing devices like Computational Storage Devices (CSD).
These devices are equipped with powerful ARM or RISC-V
cores [21, 31, 34, 36, 38], FPGAs [13, 33], and significant
DRAM capacity. Recent developments include CSDs with
16GB device RAM and 16-core Cortex processors [15]. They
offer predefined functions and customization options to elimi-
nate data movement between the host and the device while
improving performance and flexibility [16, 38]. Moreover,
CSDs such as ScaleFlux [35] and Newport [15] seamlessly in-
tegrate processor, memory, and SSD control. This integration
eliminates off-chip communication and enables fast data trans-
fer to device compute units, presenting a novel opportunity to
explore the utilization of device resources.

Additionally, the emerging CXL technology (Compute Ex-
press Link) holds promise for hardware-supported memory
expansion across accelerators and remote hosts [1, 19, 26].
CXL encompasses protocols such as CXL.io, CXL.cache,
and CXL.mem, offering device types with different data-
coherence guarantees. It enables host CPUs to expand and
access device memory, with the potential to cache data on
device memory for accelerating I/O and data processing.
Software Support for Near-storage Acceleration: To fully
exploit the potential of near-storage accelerators, considerable
software advancements have been explored to minimize data
movement costs, which accelerate and efficiently leverage
near-storage accelerators. Table 1 summarizes the capabil-
ities and limitations of existing systems. Designs such as
INSIDER [33] offload compute tasks to FPGA-based CSD
using a block-based interface. Key-value interface designs,
such as POLARDB [13], PINK [17], and KEVIN [24] of-
fload database-specific computation to near-storage. Further-
more, NearPM [37] and SmartRec [39] focus on customized
application-level optimizations or system-level guarantees.

In contrast to these systems, near-storage file system de-
signs offload the file system closer to the storage while main-
taining a POSIX-like interface. Systems such as DevFS [21]
and CrossFS [31] adopt this approach by offloading meta-
data structures to improve performance and efficiency. Fu-
sionFS [9] compared in this work, combines file system oper-
ations with computation steps and incorporates device-level
task scheduler and durability and recoverability mechanisms.
Data Processing Support: Various near-storage data pro-
cessing systems have been explored. POLARDB [13] de-
velops new application logic to accelerate applications by
offloading data to FPGA-based key-value stores. λ-IO [44]
utilizes an OS file system as a unified IO stack to manage
computation and storage resources across the host and device.
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Properties Block-
based KV-based Host FS Dev-FS Dev-FS

with caching

System Insider [33]
KV-SSD [34]

PINK [17]
KEVIN [24]

λ-I/O [44] CrossFS [31]
FusionFS [9] OmniCache

Direct-I/O ✗ ✗ ✗ ✓ ✓

Use host Cache ✓ ✓ ✓ ✗ ✓

Use device Cache ✗ ✗ ✗ ✗ ✓

Concurrent host and
device I/O processing ✗ ✗ ✗ ✗ ✓

Dynamic Offload ✗ ✗ Partial ✗ ✓

CXL support ✗ ✗ ✗ ✗ ✓

Table 1: Capabilities and Limitations of State-of-the-art Near-
storage approaches. The last column shows our proposed OmniCache.

It extends eBPF for executing functions on heterogeneous
hardware and provides additional programming interfaces for
customized computational logic. Finally, FusionFS introduces
CISCOps abstraction that combines I/O and data processing
operations to reduce application changes and overheads asso-
ciated with I/O operations, such as system calls, data move-
ment, communication, and other software overheads [9].
In-memory Caching for Storage: Caching I/O data in
DRAM is critical for modern I/O stacks [12]. Traditional
file systems rely on an OS-managed page cache, which can
introduce user-to-kernel boundary crossings and substantial
software overheads, often nullifying the benefits of fast stor-
age devices [10, 21, 27, 31, 33]. While several file systems
for devices like PM have disabled caching [41, 43], others are
exploring user-level caching support [2, 23, 27, 30, 45]. How-
ever, none of these storage designs have explored or designed
system software for collaboratively managing on-device and
host memory buffers for accelerating I/O or data processing.
Host-level Caching for Near-Storage Processing: Caching
designs like λ-IO [44] exploit host OS-level caches and only
offload processing for data not in the host OS. While useful,
these designs fail to consider or exploit device-level caches
and suffer from the following challenges: Firstly, they lack
direct I/O support, incur system call overhead, and must trap
into the OS, all adding significant overheads. Secondly, they
incur high data movement between the device and the host.
Thirdly, host-level caching designs like λ-IO fail to concur-
rently support I/O and data processing across the host and the
device. Fourthly, these designs lack CXL support. In contrast,
OmniCache provides direct I/O bypassing the OS, reduces
data movement between the device and the host, provides con-
current I/O and processing capability across the host and the
device, and support for CXL.mem and CXL.io. Finally, while
both OmniCache and λ-IO provide model-driven offloading
mechanisms, λ-IO overlooks critical factors like device cache
and command queue delays, significantly impacting perfor-
mance (demonstrated in §6).
2.2 Limitations of State-of-the-art Systems

We next present the limitations of the state-of-the-art sys-
tems. Table 1 categorizes and compares current approaches
with the proposed OmniCache.
Failure to Exploit Near-storage Memory for Caching: Ex-
isting near-storage designs [9, 31, 33, 44] either fail to ex-
ploit device memory or the combined capabilities of host
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Figure 1: Motivation Analysis: (a) shows aggregated throughput
for an I/O intensive random write and data processing application
(KNN) with 32 threads. For random write, each thread accesses
a private 4GB file (128GB total); For KNN, threads share a large
128GB file with each thread accessing a non-overlapping range; (b)
shows the latency breakdown for random write.

and device memory [42]. CrossFS [31], FusionFS [9], and
Insider [33] lack support for a host or device caching, while
λ-IO [44] only utilizes host caches through the OS file system.
This results in high I/O overheads, data movement, and fre-
quent kernel traps. Leveraging DevCache and HostCache to-
gether presents new opportunities to accelerate performance.
Lack of Concurrent I/O and Data Processing Support:
Existing near-storage designs lack support for concurrent I/O
and data processing across host and device layers [9, 31, 33].
In these designs, I/O and processing operations are mostly
offloaded to the device using fewer and less powerful device-
level processors and limited memory [9, 31, 33]. Host-only
(OS) caching solutions like λ-IO impose concurrency limita-
tions. The use of OS cache incurs scalability bottlenecks from
coarse-grained inode-level locking and suffers from eviction
stalls when the host cache is full [44]. These limitations affect
the performance of I/O and data processing [9, 31, 33, 44].
Lack of Dynamic Offloading Support: Several state-of-the-
art near-storage designs lack the capability to dynamically
decide whether to process on the host or the device and al-
ways offload (with only partial support for λ-IO). This leads
to higher data movement, queuing delays, and compute bottle-
necks. In addition, all existing designs lack a holistic approach
to concurrently process data across host and device layers.
We show that dynamic offloading and concurrent processing
can significantly enhance performance.
2.3 Analysis

First, to motivate the importance of leveraging host and
device memory for caching and to demonstrate the signifi-
cance of OmniCache toward concurrent I/O and data process-
ing operations. We compare OmniCache against state-of-the-
art NOVA (a kernel file system) [43], FusionFS (a near-storage
file system without caching support), and an extended host-
only caching design using OmniCache (Figure 1a). Like prior
systems [9], we use a machine with 512 GB DC Optane NVM
for storage, 64 CPUs, and 32 GB DRAM. We set the total
cache size to 20GB for all workloads. For OmniCache, we use
a 16GB host cache and a 4GB device cache. For brevity, we
focus on two workloads: (1) an I/O-intensive random-write
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benchmark that generates a 128 GB file with random 1KB
writes using 32 threads, and (2) an I/O + processing-intensive
K-nearest neighbor search (KNN) that does not fit in memory,
as used in prior research [44].

For the random-write workload, NOVA exhibits inferior
performance due to system call and kernel software over-
heads and the lack of caching support. FusionFS also per-
forms poorly due to the absence of caching. HostCache-user-
level suffers from data movement and frequent write stalls
during cache evictions. However, OmniCache significantly
improves performance by leveraging collaborative host and
device cache usage (§4.2). For data-processing intensive K-
nearest neighbor (KNN), HostCache-user-level incurs high
data movement costs as it exclusively processes data on the
host. In contrast, OmniCache achieves higher performance
gains by concurrently utilizing HostCache and DevCache for
collaborative processing (§4.3).

Second, to highlight the necessity of exploiting near-
storage RAM to optimize unaligned I/O requests, Table 2
shows the substantial unaligned I/O request ratios in popular
real-world applications, including RocksDB, MySQL, and
DiskANN[18]. All applications exhibit exceptionally high
unaligned ratios, which motivates OmniCache’s collaborative
I/O caching, which aims to minimize data movement overhead
associated with unaligned I/O requests (§4.2). In RocksDB,
we observe that for 10 million keys and a 4KB value size
(fillrandom and readrandom), over 99.99% of the 141 mil-
lion total I/O requests were unaligned. This emphasizes the
prevalence of high unaligned I/O requests in log-structured
systems. Similarly, MySQL and DiskANN (a state-of-the-art
approximate nearest neighbor search algorithm) also contend
with a significant number of unaligned I/O requests.

Next, to understand the software overheads, we show
the cost breakdown of these approaches in Figure 1b. We
present the average latency breakdown of OmniCache for
a random write (randwrite) workload. Firstly, the overhead
of OmniIndex is notably low, accounting for only 12% of
the total time in OmniCache. Secondly, OmniCache’s capa-
bility in minimizing write stalls leads to a marked decrease
in the queue delay overhead. Compared to HostCache-user-
level, the queue delay overhead is significantly reduced from
18.10% to 9.3% with OmniCache due to its ability to reduce
write stalls. Furthermore, OmniCache effectively reduces data
movement overhead in I/O and data processing for unaligned
I/O requests owing to its efficient near-cache I/O principle.

3 Goals and Overview
Motivated by the need to exploit host and device caches

collaboratively for accelerating I/O and data processing, we
next discuss design goals and overview of OmniCache.
3.1 Design Goals

OmniCache introduces a novel caching mechanism to har-
ness the potential of both host and device-level memory for
caching by leveraging the hardware and software capabilities

of near-storage accelerators, host CPUs, and file systems dis-
tributed across the host and device layers. By combining their
strengths and compensating for their weaknesses, OmniCache
aims to achieve the following design goals:
Faster I/O using Near-cache I/O Principle: OmniCache
introduces a new near-cache I/O principle that maximizes
I/O operations to and from the nearest cache in both the host
and device processors, thereby minimizing data movement.
Near-cache I/O reduces data movement between the host and
the device by only moving bytes actually requested by an
application without requiring block-aligned data movement.
Collaborative Caching for Concurrent I/O: To address
the lack of combined HostCache and DevCache use, one ap-
proach is to tier data between the caches. However, tiering
hinders application threads from concurrently accessing the
caches, leading to side effects like frequent CPU stalls during
cache eviction. Besides, the smaller DevCache compared to
HostCache complicates tiering. OmniCache addresses these
challenges by supporting a horizontal paradigm that allows
concurrent access to the caches. For concurrent access to
non-conflicting blocks, a host-managed scalable index (Om-
niIndex) maps a range of blocks in a file to different caches.
Collaborative Data Processing with Distributed Caching:
OmniCache exploits memory caching not just for I/O but
to also accelerate data processing operations by reducing
data movement between the host and the device. OmniCache
achieves these goals by (1) creating mechanisms for collabo-
rative data processing across host and device caches, (2) de-
veloping a model-driven approach to dynamically determine
the optimal processing location (host or device) by leverag-
ing hardware and software metrics (OmniDynamic), and (3)
supporting concurrent data processing and merging results
across host and device layers. OmniCache ’s collaborative pro-
cessing can benefit a variety of applications, especially those
that involve processing and analyzing large-scale data in a
parallel and distributed fashion. For example, graph process-
ing, search engine for indexing and searching large webpage
files, and NLP for extracting information and patterns from
unstructured text.
Effectiveness on Byte-addressable CXLs: To minimize
host-device data movement and associated queuing delays,
OmniCache utilizes modern CXL technology to extend mem-
ory capacity and enable direct access to the accelerator’s
memory [1, 20]. Leveraging the host-managed OmniIndex,
OmniCache uses CXL for direct DevCache access, thereby
reducing additional data copies and queuing delays.
3.2 OmniCache Overview

We provide an overview of OmniCache components and
briefly illustrate their functionalities. As shown in Figure 2,
OmniCache comprises three main components: (1) a user-
level library (OmniLib), (2) a user-level cache indexing struc-
ture (OmniIndex), and (3) a device manager (OmniDev). For
this overview, we consider simple I/O (e.g., read(), write())
and data processing operations, e.g., read-CRC-write (read a
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Figure 2: OmniCache High-level Design. Figure shows OmniCache
concurrently handling I/O and data processing flows. For I/O (black arrow),
1 application issues 1KB overwrite, which OmniLib intercepts, uses Om-

niIndex to locate the data in HostCache or DevCache. 2 On a cache miss,
the request is dispatched as an NVMe command using an I/O queue. 3
OmniDev fetches the request, reads a 4KB block from storage to DevCache
and updates the block. For data processing operation (blue arrow), A
application invokes OmniLib’ read-CRC-write, which searches OmniIndex
B , uses a dynamic model to process in the host ( C ) or the device ( D ) or

collaboratively on both.

4KB data block, calculate the checksum, and write it back).
OmniLib: The user-level component exploits host-level mul-
ticore CPUs, enables collaborative caching, and performs
data processing. OmniLib performs various tasks such as dis-
patching I/O requests, managing cache resources, facilitating
concurrent I/O and data processing operations, and handling
data evictions.

Figure 2 illustrates the flow of operations across Omni-
Cache ’s components. When an application opens a file and
initiates an I/O operation, OmniLib intercepts the system calls
and creates a per-file I/O queue. Next, OmniLib converts all
POSIX I/O calls to NVMe-like commands and adds them
to the I/O queues for device (OmniDev) processing (shown
from 1 to 3 ). OmniLib also handles data processing op-
erations and offers predefined application interfaces such as
read-checksum-write ( A ) or read-compress-write. These op-
erations are converted into a vector of NVMe commands and
added to the I/O queue for either offloading to the device or
processing at the host.

For caching, OmniCache divides the responsibilities
across the host and the device layers. OmniLib provides the
indexing for the HostCache and the DevCache, checks the
presence of data using the index, and manages HostCache.
OmniLib also decides when to evict from HostCache and
DevCache by implementing a two-step LRU eviction.

For data processing, OmniLib implements a model-driven
offloading engine to dynamically ( B ) decide whether to of-
fload processing (e.g., read-CRC-write) to the host ( C ) or
the device ( D ). Finally, OmniLib also provides extensibility

to use CXL.mem by directly copying data and commands to
DevCache and avoiding queuing delays and data copies.
Fine-grained Indexing (OmniIndex): We implemented it as
a part of OmniLib, providing scalable indexing for efficient
data retrieval. OmniIndex locates the data stored in Host-
Cache, DevCache, or storage. In addition to collaborative and
concurrent use of the caches, it performs ownership manage-
ment of block ranges in a file and data eviction. Figure 2
shows OmniIndex represented by a per-file range tree index-
ing structure. Each node corresponds to a specific range/seg-
ment of a file, with a pointer to the memory buffer in the Host-
Cache or the DevCache, or the storage. Blue and green nodes
in the figure indicate data residing in HostCache and Dev-
Cache, respectively. OmniIndex’s fine-grained range locks
handle concurrent I/O and processing requests across threads,
ensuring conflict-free access across the host and the device.
OmniIndex also tracks dirty data for cache eviction (§4.2.2).
OmniDev: The near-storage component consists of a file sys-
tem, a data processing engine, and support for near-storage
caching. OmniDev’s file system is similar to the prior near-
storage file system, comprising in-memory and on-disk meta-
data structures and journaling for crash consistency [9]. The
data processing engine handles processing requests, retrieving
them from the I/O queues, updating NVMe commands with
the processed output, and setting a completion flag.

With respect to caching, OmniDev handles the allocation
(space management) of the DevCache using a simple device-
level memory manager. On a cache miss for an I/O or process-
ing request, OmniDev allocates space within the DevCache
using its internal memory allocator, processes the request,
and returns the allocated cache block’s address (a block num-
ber, see §5) to update the OmniIndex using OmniLib. The
coordinated cache management between the OmniLib (host-
level) and OmniDev (devel-level) provides efficient cache
management and fast data lookup.

4 Design
We describe OmniCache’s architecture, followed by its scal-

able approach to use and manage HostCache and DevCache
for I/O and data processing operations.
4.1 Cache Architecture

OmniCache aims to minimize data movement and software
overhead by performing I/O and data processing closer to
the data, resulting in higher IOPS. It utilizes both host and
device caches. We discuss the rationale for distributed cache
management’s placement, management, and challenges.
Host Caching in the Userspace: We implement HostCache
allocation and management in the user-level OmniLib to avoid
kernel traps and system call bottlenecks of an OS-level cache
and customize cache admission and evictions for I/O and data
processing. Each application is reserved with a configurable
cache memory, which is managed by OmniLib. To support file
sharing and the host (and device cache) across applications,
OmniCache implements cache as a shared memory ( §4.2.2).
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Device-level Cache: Two important design considerations
for DevCache are: (1) maintaining data exclusively vs. inclu-
sively in the host and the device cache without increasing data
movement and communication overheads; (2) ensuring that
applications only with correct permissions access the cache
blocks despite the direct I/O bypassing the OS. Regarding
(1), we employ an exclusive caching approach, where data
blocks are either stored in the HostCache or the DevCache or
the storage (which results in a cache miss). We use exclusive
instead of inclusive cache (where data could be duplicated in
the host and device caches) for the following reasons: Firstly,
exclusive cache avoids duplicate blocks across caches, un-
like inclusive cache, increasing cache coverage. Secondly, an
inclusive cache to maintain consistency can incur high com-
munication costs between the host and the device. Finally,
because of the significantly different HostCache (larger) and
the DevCache (smaller) capacities, an exclusive cache pro-
vides the flexibility to vary the eviction frequencies.

Regarding (2), the OS and the OmniDev manages the per-
mission checks and access control, which we inherit from
prior systems [9, 31, 33]. Briefly, for a process to access a file,
a per-file I/O queue is only created by the OS if the process
has access permission to the file and the queue is also tagged
with the credential by the OS. OmniDev, before dequeuing
and dispatching a request, checks if the request in the I/O
queue has the necessary permission to access/update the file’s
content before checking the DevCache and the disk.
4.2 Collaborative Caching for I/O

We first discuss the techniques employed by OmniIndex for
fast indexing and locating cache blocks. We then elaborate on
how OmniCache reduces data movement during various I/O
operations by adhering to the near-cache I/O principle. Finally,
we describe how collaborative caching enhances concurrent
I/O by mitigating eviction stalls.
4.2.1 Scalable OmniIndex

We address the above challenges by designing OmniIndex,
a scalable and highly concurrent cache indexing mechanism
based on a range tree. OmniIndex indexes data in both Host-
Cache and DevCache, and is managed only by the host (Om-
niLib). Managing OmniIndex exclusively in the host avoids
communication and consistency overheads of maintaining
OmniIndex between the host and the device and leverages
multicore CPU parallelism for concurrent index lookup. It
also provides the flexibility to customize OmniIndex and use
it for cache admission and eviction based on the application
and user requirements.

OmniIndex, a per file range tree, offers a unified view of the
host and device caches and the storage. Each OmniIndex node
represents a specific data range within the file, with blocks po-
tentially residing in the HostCache, DevCache, or the storage.
In Figure 2, blue-colored nodes indicate data in the Host-
Cache, green nodes represent blocks in the DevCache, and
all others represent blocks on the storage device. OmniCache
utilizes OmniIndex to determine the data location.

The I/O or data processing requests are assigned to the de-
vice by the host, which uses the OmniIndex to locate existing
data blocks, if not present in any caches, allocate and updates
the OmniIndex with a new node. The device CPUs do not
access or update the OmniIndex.
Concurrent Non-Conflicting Access: For concurrent ac-
cess/updates to a file’s non-conflicting data blocks by the host
CPU threads, each node range in the OmniIndex is equipped
with a read-write lock. Threads acquire per-range lock before
accessing the corresponding data from the cache, perform-
ing I/O, or processing. When the data is not in the host and
the device caches, a range lock is acquired before issuing an
I/O command. We shortly discuss the details of using the
OmniIndex to perform I/O (e.g., write, read) and processing.
Avoiding Conflicts: To prevent conflicting and concurrent
updates of range by the host and the device CPUs, OmniCache
employs a range-level ownership model, by assigning an own-
ership of a range to the host or the device. This is feasible
because the host OmniLib is responsible for offloading I/O or
processing requests to the device and ensures that only one
entity (host or device) can modify the data within the node
range at any given time and preserve data integrity.

Tracking Dirty Data for Persistence: OmniIndex is es-
sential for managing data in the host and device. Each Omni-
Index node includes a dirty bit for each range and a bitmap
array to track block dirtiness within a range. To update the
HostCache or DevCache, pages are allocated, and the OmniIn-
dex is updated at the range level by setting a block’s dirty bit
in the range. Dirty bits are set for updates and cleared during
file commits or flushes (e.g., fsync).

Memory Overheads of OmniIndex: The memory over-
head of OmniIndex is minimal. For a 1TB file, regardless
of the data location (host or device cache), the index only
needs 128MB (< 0.001%) of memory, with each OmniIndex
node occupying 256 bytes. To reduce memory requirements
further, one could have larger OmniIndex ranges or employ
huge pages, which we will focus in the future.
4.2.2 I/O Operations with OmniCache

We next discuss a basic set of I/O operations, such as write
and read, when using OmniCache, which mainly aims to per-
form near-cache I/O to avoid data movement.

Write: When an application performs write operations
to expand a file, OmniCache employs the near-cache I/O
principle. Initially, the data is written to the HostCache of a
OmniIndex node, followed by updating the node’s informa-
tion, including updating OmniIndex node’s dirty bit informa-
tion. Furthermore, to reduce the depth of the OmniIndex and
enable batch eviction, writes are merged into a single node
with a maximum range of a pre-configured size (default is
2 MB). However, cache pages are allocated at the granularity
of the block size. We will shortly discuss the concurrent and
collaborative approach to update HostCache and DevCache.

Overwrite: To optimize overwrites, OmniCache follows
a near-cache I/O approach to minimize data movement over-
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head. If the blocks to be overwritten are already present in the
HostCache or DevCache, OmniCache updates the cache and
marks the corresponding range as dirty. In case of a cache
miss, unlike existing designs, OmniCache avoids fetching the
entire range of blocks from storage to the host. Instead, it
only reads the relevant block(s) to the DevCache to reduce
write amplification between the device and the host, applying
changes directly to the blocks in DevCache and updating the
OmniIndex. For instance, consider a scenario where an appli-
cation issues a 1KB write() on a 4KB block not present in
the cache. Other recent system designs must perform block-
aligned reads from storage to the host, reading the entire 4KB
block, resulting in I/O amplification and data movement cost.
However, OmniCache leverages the benefits of the DevCache
to overcome this limitation. The advantages of using Dev-
Cache are further demonstrated in §6.

Read: OmniCache first searches OmniIndex to locate the
blocks, then reads the blocks from HostCache, DevCache,
storage, or all. Read operations work like overwrites by load-
ing the missing data block to DevCache if space is available,
and only returning requested data to the application. Similarly
to Linux, OmniCache identifies access patterns to enhance
prefetch granularity (up to 2MB). Importantly, for blocks in
multiple OmniIndex nodes or storage, the OmniIndex with
fine-grained lock is used to concurrently read blocks, resulting
in lower latency and higher throughput.

File Commit (fsync): OmniCache uses OmniIndex’s
range and per-block dirty bit to commit one or more blocks to
storage. For blocks in DevCache, OmniCache creates and is-
sues an I/O command, and OmniDev handles the file commit.
The fsync is treated as a barrier operation on a file.

File Sharing: For sharing files across processes, Omni-
Cache allocates cache pages within a shared memory region
facilitated by our shared memory allocator. Access to the
shared cache and OmniIndex is limited to processes with
the necessary file permissions. In the case of processes with
write permissions, OmniCache maps the shared memory as
writable. However, like many prior user-level direct-access
file system designs, the direct-I/O approach is susceptible
to corruption [9, 21, 24, 25, 29, 33]. For instance, a process
with write permission could potentially corrupt the OmniIn-
dex. While prior near-storage designs [31] transition to the
OS to handle shared file updates, we have also adopted an
approach used by previous user-level file systems (such as
Aerie [40], Strata [25], uFS [27]), which involves a trusted
third-party server mediating access to the shared OmniIndex
using lease-based locks. Nevertheless, our future work will
optimize inter-process sharing, as this work primarily focuses
on accelerating single multi-threaded applications.
4.2.3 Concurrent Caching and Reducing Eviction Stalls

Concurrent use of HostCache and DevCache and low-
overhead cache eviction is crucial for minimizing applica-
tion stalls and optimizing performance. However, the limited
capacities of caches can result in frequent evictions for data-

intensive applications, affecting performance [22].
To tackle these challenges, we propose collaborative

caching and concurrent eviction. In collaborative caching, ap-
plication threads concurrently use HostCache and DevCache,
switching between them when one cache is full. This reduces
compute stalls and enhances performance (see Section 6).

Two-step LRU Eviction: The effectiveness of dual-cache
utilization depends on accelerated cache eviction. New data
updates initially enter HostCache. When HostCache reaches
capacity (no available space), OmniLib directs writes to Dev-
Cache and starts concurrent eviction in HostCache. A back-
ground eviction thread manages two levels of LRU informa-
tion: (1) a file-level LRU, where all closed or inactive files
are added to a global LRU list; (2) a per-file OmniIndex LRU
list that tracks least-recently-used ranges. A file or a range be-
comes LRU if not accessed within a configurable 30-second
epoch, akin to Linux. In the first step of the eviction process
(from HostCache or DevCache), we evict LRU files. If free
cache space drops to a lower threshold (10% free memory),
applications continue inserting into the cache. Otherwise, the
second step entails range-level LRU eviction, removing blocks
from the device and host. For DevCache eviction, OmniLib
sends an NVMe-like eviction command to OmniDev to evict
ranges. The collaborative caching and two-step eviction en-
sure a seamless transition between HostCache and DevCache,
concurrent utilization of different caches, reduced compute
stalls, and improved performance (see Section 6).
4.3 Collaborative Processing with Caching

OmniCache also leverages HostCache and DevCache to
accelerate data processing. The effectiveness of offloading op-
erations for near-storage processing depends on the frequency
of I/O operations and factors such as the impact of using
less powerful on-device computing and smaller memory re-
sources. We first discuss the application interface support, the
challenges, and solutions to support collaborative processing.
Application Interface for Processing: Like prior ap-
proaches, OmniCache requires applications to use pre-defined
processing functions [9, 33, 44] provided by OmniLib. Un-
like λ-IO, which utilizes eBPF, imposing restrictions on op-
erations/functions involving floating-point calculations and
unbounded loops. OmniCache follows a near-storage file sys-
tem paradigm; it borrows and extends the CISC-like interface
from prior work [9], enabling application developers to of-
fload richer operations/functions, such as checksum or com-
pression. As shown in Figure 2, the I/O and data processing
operations are converted and stacked as a vector of NVMe
commands and offloaded as batched operations (referred to as
CISC operation [9]). Unlike prior systems, OmniCache can
collaboratively process simple and complex operations (e.g.,
read-cal_distance-nearestK) in the host, the device, or both.
Challenges: Collaborative data processing requires concur-
rent host-device processing, dynamic data migration across
caches, and intelligent decisions on offloading based on hard-
ware and software costs (e.g., data movement overheads, pro-
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Figure 3: OmniCache Collaborative Processing for KNN. read-
cal_distance-nearestK is concurrently executed across host and device.

cessing times, and queuing latency).
Key Ideas: To address these challenges, we extend collabora-
tive caching approach, incorporating I/O caching and data pro-
cessing. Firstly, we use OmniIndex for concurrent range-level
data processing on both host and device with fine-grained
range concurrency, enhancing performance. Secondly, we
introduce a dynamic model that considers hardware and soft-
ware metrics (e.g., storage, memory, compute time, queuing
latency). This model continuously monitors the system and
dynamically selects the best offloading location to use re-
sources efficiently.
4.3.1 Extending OmniIndex for Compute Cache:

We improve OmniIndex by adding processing buffer, an
intermediate computation buffer separate from cache buffer.
Processing buffer is linked to each tree node and can be stored
in host or device memory. Processing buffer is accessed via
an address reference in each interval tree node. This helps
OmniCache quickly find processing states, split and merge
processing on the host and the device.
Case study: K-Nearest Neighbor Search (KNN): We
demonstrate KNN, a widely used ML algorithm that identi-
fies the K-nearest data points to a given query point. Since
the dataset exceeds the memory capacity, KNN reads a large
data chunk, calculates distances between data points, selects
the K-nearest points, predicts classification based on them,
and optionally writes results to a new file.

In OmniCache (see Figure 3), we handle this with a com-
bined I/O and data processing operation called read-cal_-
distance-nearestK. This operation reads a data range,
computes distances, and selects the K-nearest points. In-
termediate results, like calculated distances, are stored in
a processing buffer. OmniCache executes read-cal_-
distance-nearestK concurrently on both host and de-
vice, leveraging collaborative processing.

Afterward, OmniCache merges the K-nearest points for
final classification prediction. It involves transferring data
between host and device, requiring data copying. Importantly,
read-cal_distance-nearestK and prediction opera-
tions can be performed on either host or device, determined
by our resource-driven dynamic offloading strategy (§4.4).
4.4 Resource-driven Dynamic Offloading

OmniCache aims to increase near-cache and near-data pro-
cessing on both host and device while minimizing data move-
ment. However, disparate compute capabilities, cache capac-
ity, and data transfer times between storage, HostCache, and
DevCache necessitate a dynamic approach for determining

the optimal processing location. The challenges in making
these offloading decisions are threefold. First, processing op-
erations where the data is distributed across host and device
caches may incur data movement. Second, hardware and soft-
ware metrics to decide where to offload, such as computa-
tional costs, memory requirements, and I/O frequency, can
vary significantly based on the processing complexity. Third,
monitoring both host and device hardware and software met-
rics without interfering with data-plane operations is critical.
Model-driven Approach: To address these challenges, we
introduce OmniDynamic. It leverages a model-driven ap-
proach coupled with ongoing monitoring of both host and
device resources. We begin by outlining the model and then
detail our implementation approach. The model (Equation 1)
estimates the processing time for each request and determines
where the request will be processed (host or device).

Th and Td calculate the processing time for a request on the
host and the device, respectively, by considering various fac-
tors: Data Ratio (R) represents data associated with a request
distributed across HostCache, DevCache, and storage. The
ratios Rhm, Rdm, and Rs represent the portion of data in the
host memory (hm), device memory (dm), and storage (s) for
each request. Execution Time (E) captures the processing
cost alone, Ehavg represents the average time to execute a re-
quest on the host, while Edavg represents the average time on
the device. Data Transfer Cost (B) captures the data move-
ment between HostCache, DevCache, and storage. Bhm_dm
denotes the data transfer bandwidth between HostCache and
DevCache, Bds_hm represents the bandwidth between storage
and HostCache, and Bds_dm represents the bandwidth between
storage and DevCache. Finally, Queue Latency represents
the completion time of a request, which depends on the queu-
ing delay. This varies based on the number of I/O and data-
processing requests in the per-file I/O queue and the average
time required to process a request (Cmdavg ∗Qlen). The queue
delay increases during cache eviction.

Th = RdD/Bhm_dm +RsD/Bds_hm +Ehavg

Td = RhD/Bhm_dm +RsD/Bds_dm +Cmdavg ∗Qlen +Edavg
(1)

Continuous and Low-interference Monitoring: To realize
the dynamic offloading model, OmniCache continuously mon-
itors hardware and software parameters across the host and
device layers using the OmniDynamic component. This com-
ponent operates at the intersection of OmniLib and OmniDev,
collecting metrics such as cache data ratios, data movement
bandwidths, processing costs, and queue wait-time overheads.

For metric collection at the device, we extend each NVMe
command for data processing with additional counters, includ-
ing on-device processing time (Ed), data movement band-
width between DevCache and HostCache (Bhm_dm), and be-
tween storage and DevCache (Bds_dm).

As depicted in Algorithm 1, the initial phase is devoid
of resource parameters and relies on OmniIndex to manage
data distribution across HostCache, DevCache, and storage.
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Algorithm 1: Model-driven Data Processing
1 All measurements are done periodically (per epoch)
2 Query OmniIndex to get data distribution ratio (Rh and Rd )
3 Get current queue length from I/O queue (Qlen)
4 Compute Th and Td based on Equation 1
5 if Th <= Td then
6 load_data_to_host()
7 measure_devmem_to_host_bw(&Bhm_dm)
8 measure_devstorage_to_host_bw(&Bds_hm)
9 execute_request_at_host()

10 measure_avg_execution_latency(&Ehavg)
11 else
12 move_data_to_device()
13 measure_host_to_devmem_bw(&Bhm_dm)
14 measure_devstorage_to_devmem_bw(&Bds_dm)
15 execute_request_at_device()
16 measure_avg_execution_latency(&Edavg)
17 measure_queue_latency(&Cmdavg)

By leveraging the cache ratios (R), OmniDynamic makes of-
floading decisions with a preference for near-data processing.
When data exclusively resides on the host or the device, it
undergoes processing without requiring data movement. Con-
versely, data scattered across caches and storage prompts data
transfer, typically from the layer with a smaller data footprint.

OmniDynamic calculates the average processing times
(Ehavg and Edavg) for each request type by tracking the pro-
cessing cost in the host or device. To measure the time spent
by requests on the per-inode I/O queue (Cmdavg ∗Qlen), Om-
niLib updates the queue admission time, while OmniDev
updates the request completion time in the per-inode I/O
queue.
4.5 Exploring CXL Extensibility with OmniCXL

To explore OmniCache’s potential with emerging technolo-
gies like CXL.mem for caching, we introduce OmniCXL. As
explained in §2.1, CXL.mem enables direct host access to an
accelerator’s memory. We do not assume hardware-supported
cache coherence between HostCache and DevCache. In this
context, we investigate how OmniCache leverages CXL.mem
to reduce data copy and queuing bottlenecks while ensuring
safe operation without hardware-level cache coherence sup-
port. In OmniCache’s queue-based design, all requests incur
overheads like packing and copying data and NVMe com-
mands from the application (or device) buffer to the DMA-
enabled I/O queues, queuing delays, and host CPU overheads
like polling for request completion.
Reducing I/O and Processing Overheads: To reduce the
above overheads, we propose extending OmniCache to lever-
age CXL.mem (OmniCXL). In this approach, device memory
appears as an additional NUMA node in the host OS, a widely
used abstraction for memory expansion. To use the device
memory as DevCache, the OmniLib of a process memory
maps and registers a designated region within the address
space as DevCache. The DevCache size for each application
is determined based on a specified limit.

When an application issues I/O operations like write()
that cannot be cached in the HostCache due to space con-
straints, OmniLib directly writes data to DevCache after ac-

quiring the range lock in OmniIndex and flushes the data to
memory. This enables OmniCXL to avoid (1) copying data
between application and device queues, (2) packing (at host)
and unpacking (at device) NVMe commands, (3) reducing
queuing delays, and (4) continuous polling for request com-
pletion, thereby minimizing CPU overheads. Furthermore,
data copy overheads are avoided for processing requests of-
floaded to the device (e.g., append-checksum-write), but
the request queuing and polling are still necessary.

5 Implementation Details
We first describe the implementation details at the near-

device and host layers, followed by our approach to emulate
near-storage and CXL.mem.

First, we implement an emulated OmniDev as a device
driver (8K LOC) due to the lack of access to a programmable
storage hardware, similar to prior work [9, 31]. To understand
OmniCache’s impact on faster and slower storage, we imple-
ment two distinct near-storage backends: one on Intel Optane
Persistent Memory (PM) by extending PM file system and
the other on NVMe-based SSDs that uses block-level ext4
with I/O operations bypassing the OS cache. We also add a
storage processing engine to OmniDev.

Second, to manage DevCache, in OmniDev, we imple-
ment a lightweight and efficient memory allocator that uses
a bitmap array to track the availability of cache blocks. The
allocator returns a block ID to host-level instead of exposing
the device’s memory address to the host.

Third, OmniLib (discussed in in §3.2) uses a shim library to
intercept POSIX I/O operations and convert them to OmniDev
compliant NVMe commands. For HostCache management,
we extend the scalable jemalloc[4] allocator for cache block
allocation and release. When using a non-CXL near-storage
device, the NVMe commands are copied to the per-file NVMe
queues, which are later de-queued and dispatched by the Om-
niDev. In contrast, for CXL.mem, OmniLib directly accesses
the device memory. We implement a CXL memory alloca-
tion semantics for OmniLib to register and allocate a CXL
namespace that is shared across OmniLib and OmniDev.

Finally, to emulate device memory and compute speeds,
and CXL.mem latency and bandwidth, we employ a two-
step emulation. First, to emulate a slower device memory
access from the host CPUs, we map device memory on a
NUMA socket (node) remote to the host CPUs but local to
the device CPUs. Precisely, in a system with two sockets, we
allocate the host memory on NUMA node0, which is local
to the host CPU and remote to the device CPUs. On the con-
trary, we allocate device memory on NUMA node1, which is
local to the device CPU but remote to the host CPU. Next, to
emulate device memory bandwidth, we throttle device mem-
ory’s bandwidth using thermal throttling [6], lower device
CPU speeds using frequency scaling, and add software la-
tency to vary PCIe latency. In §6.4, we study the sensitivity
of OmniCache on these hardware parameters.
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Figure 4: Microbenchmark. Threads use private files; workload size fixed at 64GB with 1KB I/O size and total cache size is 20GB.

6 Evaluation
We evaluate OmniCache to answer the following questions:
• How effective is OmniCache’s collaborative use of Host-

Cache and DevCache to improve I/O performance?
• Can OmniCache accelerate data processing with its con-

current and model-driven dynamic offloading?
• How does using OmniCache in conjunction with CXL

impact the performance?
• What is the overall impact on real-world applications?

6.1 Experimental Setup
Environment: We use a dual-socket, 64-core, 2.7GHz

Intel(R) Xeon(R) Gold platform with 32GB memory. For
storage, we use a 512GB (4x128GB) Optane DC persistent
memory with App-Direct (persistent) mode to represent the
upcoming fast storage as well as 512GB NVMe SSD to study
the benefit of OmniCache on slower storage. (see appendix ap-
pendix A.2.1). We emulate DevCache with 4GB of DRAM
for caching and for OmniDev, we reserve 4 CPUs.

Methodology: For comparison, we consider the state-of-
the-art PM OS file system, NOVA, and the near-storage file
system, FusionFS, which lacks caching support (FusionFS).
To understand the benefits and implications of host-only
caching, we explore two configurations: (1) user-level
host cache with OmniIndex atop FusionFS, referred to as
HostCache-user-level; (2) emulated λ-I/O without FPGA but
with OS caching (lambda-IO-emulate), which does not ex-
ploit near-storage cache (see Table 1). We emulate λ-I/O
due to the unavailability of a customized hardware platform
(Daisy/DaisyPlus OpenSSD) and OS (PetaLinux), and sig-
nificant engineering challenges as highlighted by the au-
thors [5]. Moving on to the OmniCache configuration, we
begin by comparing our PCIe-based implementation without
OmniDynamic, where offloading is solely determined by the
data presence ratio (OmniCache). Subsequently, we compare
OmniCache-dynamic to emphasize the impact of OmniDy-
namic on data processing performance. Finally, we evaluate
OmniCXL to demonstrate the effect of CXL on performance.
For all evaluation results, the total cache size is kept the same.
6.2 I/O Performance

We first evaluate I/O performance using sequential and ran-
dom access I/O patterns. We vary workload threads from 1 to
32, each issuing 1KB I/O requests, resulting in a total work-
load size of 64GB. Figure 4 shows the cumulative through-
put for private file access without file sharing, and Table 3
shows the benefits of using OmniIndex fine-grained concur-
rency when sharing files with multiple threads. Regarding

FusionFS HostCache-user-level OmniCache
Readers 978 1893 2323
Writers 523 1223 1732

Table 3: File sharing. Results show aggregated throughput (MB/s) for
16 reader and 16 writer threads on a shared 64GB file.
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Figure 5: I/O Size Study.

caching, the HostCache-user-level and lambda-IO-emulate
approaches employ a total of 20GB of host DRAM cache,
while OmniCache configurations use 16GB HostCache and
4GB DevCache, a configuration used in prior systems [9, 33].

Observation: Figure 4a and 4c show results for sequential
and random write workloads, respectively. As anticipated,
NOVA and FusionFS lack caching and access storage for
all I/O operations, which results in poor performance. Both
HostCache-user-level with user-level caching and lambda-
IO-emulate with OS caching show improvements but face
high I/O stalls due to frequent cache eviction, particularly for
random workloads. Similarly, for read workloads shown in
Figure 4b and 4d, the host caching approaches, for each 1KB
request, fetch 4KB blocks, increasing data movement cost,
host-cache pollution, and suffer eviction stalls.

In contrast, OmniCache outperforms others by employing
a collaborative approach that exploits host and device caches.
Firstly, it adheres to the near-cache I/O principle, significantly
reducing data movements between storage and host memory
or between the host and device memory. For sequential access,
DevCache identifies sequential access patterns, akin to Linux
VFS, and preloads the entire 2MB data range (OmniIndex) to
optimize data locality. However, it only returns the requested
data (1KB) to the application, preventing I/O amplification
and unnecessary data transfers. Subsequently, requests to the
same 2MB range often result in cache hits. Secondly, Om-
niCache’s collaborative caching performs writes or reads on
both HostCache and DevCache, effectively minimizing write
stalls and read times. As a result, OmniCache consistently
outperforms FusionFS and HostCache-user-level, achieving
performance gains of up to 2.53X and 1.52X, respectively.

I/O Size Sensitivity: We evaluate the impact of differ-
ent I/O sizes by varying the request size from 1KB to 5KB
while maintaining constant cache and workload sizes. This
range encompasses both block-aligned and non-block-aligned
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Figure 6: Cache Sensitivity Study. 32 microbenchmark threads with
different cache ratio from 25% to 100% (maintaining equal total cache size
for HostCache-user-level and OmniCache).
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Figure 7: I/O + Data Processing (Read-CRC-Write)

requests, mirroring real-world application behavior (Table
2). For instance, in RocksDB, numerous application I/O re-
quests are not block-aligned. Figure 5 illustrates that Om-
niCache consistently outperforms other approaches for non-
block-aligned requests across various workloads, reaping the
benefits of near-cache I/O. For block-aligned (4KB) random
write, OmniCache provides performance gains, attributable to
its concurrent I/O and collaborative caching that reduces write
stalls. For block-aligned random reads (e.g., 4KB), Omni-
Cache performs similar to HostCache-user-level, as it moves
the entire block to the host.

Impact of Data to Cache Size Ratios: We investigate the
impact of the data-to-cache size ratio on the throughput of
random read and write workloads. Figure 6 displays this im-
pact, with the x-axis ranging from 25% to 100% cache ratio.
A 25% ratio implies that the data size is four times larger than
the combined HostCache and DevCache sizes. At lower ra-
tios, HostCache-user-level experiences frequent evictions and
thread stalls. In contrast, OmniCache smoothly transitions
application threads to utilize DevCache when HostCache
reaches its capacity. It then initiates background eviction of
HostCache before switching back to HostCache. Even at a
100% cache ratio, OmniCache outperforms others by mini-
mizing data movement using near-cache I/O principle.
6.3 Data Processing with OmniCache

We evaluate the effectiveness of collaborative processing
and dynamic offloading with OmniCache for I/O and compute-
intensive read-CRC-write workload. Thread randomly reads
4KB data blocks, calculates checksum, and writes it back.

Throughput Analysis: Figure 7a illustrates that Fu-
sionFS encounters NVMe command communication and data
copy overheads. It necessitates offloading each request to
the device, performing computations on the device, and sub-
sequently writing the data back to device storage. On the
other hand, HostCache-user-level operates more efficiently
when requests are served from the host cache, enabling direct
execution on the host. However, in cases of cache misses,
HostCache-user-level incurs data movement overhead be-
tween storage and host memory, which hinders computation.
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Figure 8: OmniDynamic Model Breakdown (Read-CRC-Write)
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Figure 9: Model’s Sensitivity for Read-CRC-Write

In contrast, OmniCache-dynamic dynamically offloads data
processing operations by efficiently considering multiple fac-
tors. Figure 7a illustrates that OmniCache-dynamic signifi-
cantly enhances performance, especially under heavy work-
load scenarios. This improved performance results from its
model-driven approach, which continuously monitors exe-
cution time, queue latency, and other factors to dynamically
determine the optimal offloading location.

Latency Analysis: In Figure 7b, we examine latency vari-
ations in the read-CRC workload. HostCache handles write
requests well initially but experiences fluctuations and delays
due to evictions after epoch 1000, resulting in longer queue de-
lays. Additionally, execution costs vary due to higher proces-
sor cache misses and I/O frequency. In contrast, OmniCache-
dynamic’s model-driven approach, which considers factors
like data distribution ratio, queue length, and execution costs,
maintains lower and stable latency, outperforming HostCache-
user-level by up to 1.42X.
6.4 OmniDynamic Model Effectiveness

We empirically validate the effectiveness of OmniDynamic
model by deciphering the impact of model parameters and
the sensitivity to hardware speeds.

Model Performance Breakdown: Figure 8 shows perfor-
mance analysis by gradually incorporating different param-
eters of the model (data movement, execution time, queu-
ing delays) and understanding their impact on the read-
CRC-write workload. First, the decision to offload to device
or process in host, is significantly influenced by data frac-
tion (Rh or Rd) in HostCache or DevCache (model[+data_-
move]). Second, the execution time (Edavg or Ehavg) fluc-
tuates, impacted by factors like data presence in the host
and device processor caches that can accelerate execution
(model[+data_move+exe_cost]). Finally, overheads of queu-
ing delay (Cmdavg ∗Qlen) becomes particularly pronounced
for higher application thread count and frequent background
eviction (model[+data_move+exe_cost+queue_delay]).

Sensitivity to Hardware Parameters: To understand
the OmniCache-dynamic model’s sensitivity toward device
CPU speed and low-bandwidth memory, we show the per-
formance of OmniCache with slower CPU (Figure 9a). Due
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Figure 11: Real-World Applications.

Vary Device Hardware Parameters
Device CPU Frequency 2.7 GHz 2.0 GHz 1.2 GHz
Device Memory B/W 120 GB/s 60 GB/s 16 GB/s

PCIe Latency 900ns 1200ns 1500ns
# of ops. executed in host 12.52M 14.67M 15.24M

# of ops. executed in device 4.19M 1.90M 834.32K

Table 4: OmniDynamic Model’s Sensitivity Analysis
to space constraints, we only consider FusionFS and Omni-
Cache. The device CPU is throttled to 1.2GHz for FusionFS
(FusionFS-slow-device-cpu) and OmniCache (OmniCache-
dynamic-slow-device-cpu) compared to 2.7GHz for host
CPUs. Similarly, in Figure 9b, the device memory is throttled
to 16GB/s for FusionFS (FusionFS-slow-device-mem) and
OmniCache (OmniCache-dynamic-slow-device-mem) com-
pared to 120GB/s for host DRAM (8× bandwidth reduction).
Despite slower device CPUs and reduced memory bandwidth,
OmniCache provides up to 1.22X gains over HostCache by
dynamically distributing work across the host and the device.

To comprehend the model’s sensitivity and work distri-
bution, in Table 4, we vary the device CPU, memory, and
PCIe latency values and monitor OmniCache-dynamic’s of-
floading decision. As we gradually reduce the device CPU
frequency, lower the memory bandwidth, and increase PCIe
latency, OmniCache-dynamic increases operations on the host
rather than indiscriminately offloading them to the device.
6.5 CXL.mem enabled OmniCache

Figure 10 shows the benefits of using CXL.mem for ran-
dom access workloads. While OmniCache without CXL in-
curs overheads from data copies between the host and the
device and queuing delays, OmniCXL directly accesses De-
vCache with CPU loads/stores after acquiring ownership of
a range. This improves performance by diminishing these
overheads. Furthermore, OmniCXL reduces CPU polling cost
for request completion, all leading to 2.76X and 1.21X gains
over HostCache-user-level and OmniCache, respectively.
6.6 Real-World Applications

We next evaluate the benefits of OmniCache on real ap-
plications. LevelDB: LevelDB is a widely-studied LSM-
based persistent key-value store [3]. We modify LevelDB’s
append→checksum→write sequence by introducing the
append-CRC-write operation and read→checksum sequence
with read-CRC, similar to FusionFS (11 LOC changes). The
checksum operations are used in LevelDB to avoid frequent
commits on SST files [9]. We run experiments using the
widely-used YCSB cloud workload [14] that comprises six
distinct access patterns (A-F), each with differing read/write
ratios and exhibits a Zipfian distribution with access locality.

We use 512B value sizes, 40 million keys, and 32 threads.
Performance: As shown in Figure 11a, OmniCache outper-

forms across all workloads. Particularly, write-intensive A and
F workloads show maximum gains over HostCache-user-level
attributed to (1) near-cache I/O that reduces data movement
for non-block aligned requests, (2) collaborative caching that
minimizes CPU stall time, and (3) dynamic offloading to ef-
fectively use of host and device resources. Over FusionFS,
OmniCache shows up to 1.92X gains. db_bench [8] for ran-
dom workloads show even higher gains (see appendix A.2.2).
Nearest Neighbor Search (KNN): Next, we evaluate Omni-
Cache using a complex KNN workload, utilizing an imple-
mentation from prior work [33]. However, we deviate from
their assumption of the entire workload fitting into device
memory. Instead, we employ a 128GB workload, with 20GB
HostCache-user-level or 16GB HostCache and 4GB Dev-
Cache for OmniCache. To handle datasets larger than the
cache size, the application divides the file into shards and,
for each shard, performs distance calculations (see §4.3),
merging the per-shard distances for KNN prediction.

As Figure 11b shows, FusionFS, without caching, performs
poorly as KNN execution requires reading each shard from
storage to the device. HostCache-user-level offers marginal
improvement but encounters significant data movement and
eviction overheads as the data size surpasses the cache. In con-
trast, OmniCache effectively and concurrently utilizes both
host and device for read-cal_distance-predict, resulting in
performance gains of up to 5.15X over FusionFS.

7 Conclusion
We develop OmniCache, a collaborative caching design

to leverage host and device memory as cache to accelerate
I/O and data processing. OmniCache achieves this through
scalable indexing, concurrent caching and processing support,
and a dynamic model-centric offloading technique leading to
substantial performance gains on both microbenchmarks and
applications.
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FusionFS w/ NVMe Storage HostCache-user-level OmniCache
Random Read 731 2153 2521
Random Write 990 1573 1982

Table 5: Microbenchmark on NVMe Storage. Results show aggre-
gated throughput (MB/s) for 32 benchmark threads.

A Appendices
A.1 Discussion

We have implemented various functions, including check-
sum, compression, nearest-neighbor search, and text search
operations (not all shown due to space limitations). How-
ever, it is important to note that, like most existing systems,
OmniCache assumes that OmniDev already incorporate these
functions. Even previous near-storage systems [9, 10, 33], and
those that use eBPF-based offloading [44] require device-level
modifications and frequent kernel traps, which are not ideal
for I/O-intensive applications. Developing a more generic
offloading mechanism without requiring application changes
requires compiler support, and is a complex task that falls
outside the scope of this paper. In addition, our future work
will explore using CXL.mem to enable memory-mapping
(mmap()) support. To the best of our knowledge, existing sys-
tems also lack this particular feature.
A.2 Additional Performance Evaluation
A.2.1 Sensitivity to Slower NVMe Storage

To understand the impact of OmniCache when using slower
storage media, NVMe-based SSD, we use the same exper-
imental configuration and microbenchmarks to study the
throughput. As shown in Table 5, OmniCache shows an even
higher performance gain of 3.24X over FusionFS and 1.21X
over HostCache-user-level. Notably, the gains are high com-
pared to PM-based storage. These gains highlight the im-
portance of collaborative cache use for slower storage. We
observe performance gains even for data processing work-
loads (not shown due to space constraints).
A.2.2 Impact of OmniCache for LevelDB’s db_bench

In order to assess the efficiency of the collaborative caching
design offered by OmniCache, we also evaluate the random
write and random read workload in Figure 12 using the widely-
used db_bench for 1 million key-value pairs and 32 applica-
tion threads with 4KB value size. OmniCache delivers higher
performance across all workloads. These enhancements can
be attributed to collaborative caching for I/O operations. In
addition, OmniCache’s dynamic offloading further amplifies
these gains by ensuring optimal resource utilization between
the host and device.
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Figure 12: LevelDB (db_bench)

B Artifact Appendix
Abstract

The OmniCache artifact is the practical implementation
of the collaborative caching design presented in this paper,
aimed at optimizing I/O and data processing by utilizing both
host and device memory as caches.
Scope

The artifact enables validation of the benefits of collab-
orative caching for concurrent I/O, the impact of dynamic
model-driven offloading on data processing, and showcases
the extensibility of OmniCache with CXL. OmniCache is li-
censed under Apache License 2.0.
Contents

The OmniCache artifact comprises user-level library (Om-
niLib) and the OS component for emulating near-storage
device (OmniDev), which are required for the execution. The
artifact comprises real-world applications (LevelDB, YCSB
workload and KNN) besides microbenchmarks, as shown in
the paper. The artifact includes steps to compile the user-level
library, the OS, microbenchmarks, and applications, and steps
to run these workloads.
Hosting

The artifact is available on GitHub: omnicache-fast24-
artifacts.
Requirements

Our artifact is based on Linux kernel 4.15.18 and it should
run on any Linux distribution. The current scripts are devel-
oped for Ubuntu 18.04.5 LTS. Porting to other Linux distribu-
tions would require some script modifications. Our artifact
requires a machine equipped with Intel Optane memory.
Evaluation

We provide a comprehensive step-by-step README on
GitHub to reproduce the experiment in the paper. As a brief
overview of the evaluation, we illustrate how to execute a
simple microbenchmark with OmniCache. More evaluations
can be found on our GitHub page.

Before running, we assume the modified kernel (OmniDev)
is installed, NearStorageFS is mounted on the machine
(please see the README file) and the current work direc-
tory is in the project’s root directory.
1. First, compile and install the user-level library (OmniLib):

$ source ./scripts/setvars.sh;
$ cd $LIBFS;
$ source scripts/setvars.sh
$ make && make install

2. Next, to run a simple micro benchmark:
$ cd $BASE/libfs/benchmark/;
$ mkdir build && make
$ ./scripts/run_omnicache_quick.sh
Expect output will be similar to "Benchmark takes 0.97

s, average throughput 4.45 GB/s". If the output matches the
above, your environmental settings are appropriately config-
ured.
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