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ABSTRACT

As data generation has been on an upward trend, storing vast
volumes of data cost-effectively as well as efficiently accessing
them is paramount. At the same time, today’s storage landscape
continues to diversify, from high-bandwidth storage devices such as
NVMe SSDs to low-latency non-volatile memory (e.g., Intel Optane
DCPMM). These heterogeneous storage devices have the potential
to deliver high performance in terms of bandwidth and latency with
cost efficiency, while achieving the performance and cost targets
together still remains a challenging problem.

We provide our solution, Prism, a novel key-value store that
utilizes modern heterogeneous storage devices. Prism uses hetero-
geneous storage devices synergistically to harness the advantages
of each storage device while suppressing their downsides.We devise
new techniques to balance the latency-bandwidth tradeoff when
reading from SSD. For ensuring multicore scalability and crash
consistency of data across heterogeneous storage media, Prism pro-
poses cross-storage concurrency control and cross-storage crash
consistency protocols. Our evaluation shows that Prism outper-
forms state-of-the-art key-value stores by up to 13.1× with signifi-
cantly lower tail latency.
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1 INTRODUCTION

Key-value stores have been a critical component of storage in-
frastructure in a wide range of applications, including database
systems [1, 7, 13, 19, 22, 32, 39, 54, 55, 74, 76, 79, 81], caching sys-
tems [28, 67], distributed file systems [11, 17], distributed analyt-
ics [20, 31], and serverless platforms [44, 87]. Efficient key-value
stores should provide high performance cost-effectively. In particu-
lar, the amount of data generated and stored is growing exponen-
tially [23], and many emerging application domains require high
performance.

For decades, storage systems have harnessed the storage hierar-
chy for cost efficiency. The hierarchical approach classifies storage
devices into performance devices and capacity devices. Performance
devices offer high performance in all aspects – high bandwidth and
low latency, at the expense of high price ($/TB). On the other hand,
capacity devices provide high capacity at low price at the cost of low
performance. SSD and HDD have manifested the performance and
capacity layers, respectively. Most key-value stores [21, 45, 47, 89]
have employed hierarchical designs – such as caching, tiering, and
layered LSM-tree architecture – to balance the performance and cost
using the performance and capacity layers, by placing frequently
accessed hot data on performance devices.

However, recent advances in storage hardware technologies blur
the clear separation between performance and capacity layers. For
instance, flash SSDs with PCIe Gen 4 provide higher bandwidth
than byte-addressable NVM (Intel Optane DCPMM) at a 27× lower
price, but NVM has two orders of magnitude lower latency than
SSD, as shown in Figure 1. Moreover, the upcoming CXL-based per-
sistent memory expansion [25, 69] will provide more performance
and cost tradeoff options. Hence, there is no longer an explicit
dichotomy between performance and capacity devices in today’s
storage landscape. Prior studies also made similar observations
– “storage jungle” [38] and “non-hierarchical storage” [88]. As a
result of recent evolution towards a non-hierarchical, overlapping
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Specification Performance Cost

Type Model
Read BW

(GB/s)

Write BW

(GB/s)

Read Latency

(usec)

Write Latency

(usec)
$/TB

DRAM SK Hynix DRAM (16GB/DDR4) 15 15 0.08 0.08 5,427

NVM Intel Optane DCPMM (128GB/DDR-T) 6.8 1.9 0.30 0.09 4,096

NVM SSD Intel Optane 905P (960GB/PCIe 3) 2.6 2.2 10 10 1,024

Flash SSD Samsung 980 Pro (1TB/PCIe 4) 7 5 50 20 150

Flash SSD Samsung 980 (1TB/PCIe 3) 3.5 3 60 20 100

Figure 1: Heterogeneous storage media. Due to recent advances in SSD and NVM technologies, there is no clear separation

between performance devices and capacity devices. For instance, while byte-addressable NVM offers the shortest access latency,

flash SSD (PCIe Gen4) provides the highest bandwidth at a 27.3× lower cost ($/TB). Moreover, PCIe Gen5 SSDs are expected to

double the bandwidth and IOPS [5].

storage landscape, many optimizations developed for conventional
hierarchical storage systems are neither cost-effective nor optimal.

In this paper, we seek an answer to the question: “How should
we design a key-value store in a non-hierarchical storage landscape?”.
We answer the question by proposing a novel key-value store,
Prism, considering storage heterogeneity as a first-class citizen.
We leverage each individual storage device’s type strengths – flash
SSDs have high bandwidth and low cost, while NVMs have low
latency and high endurance – to compensate for their respective
disadvantages so that we can achieve high performance and cost-
effectiveness together. We revisit the performance and cost require-
ments of each component of key-value store for strategic place-
ment of them on heterogeneous storage devices. We propose the
Prism architecture, where each Prism component is placed on the
storage device that best satisfies its requirements. Components of
Prism are scattered across multiple heterogeneous storage devices,
so achieving efficient crash consistency and concurrency control
across heterogeneous storage devices is of paramount importance.
Thus, we also introduce cross-media crash consistency and concur-
rency control techniques. As a whole, Prism derives a synergistic
interaction between heterogeneous storage devices, allowing them
to unleash their full potential.

This paper makes the following contributions:
• We propose Prism, a novel heterogeneous key-value store. For
synergistic use of heterogeneous storage devices, Prism consists
of Persistent Key Index, Persistent Write Buffer (PWB), Value
Storage, Scan-aware Value Cache (SVC), and Heterogeneous Stor-
age Index Table (HSIT). We judiciously place each component
based on its performance and cost requirement. Additionally,
we propose efficient crash consistency and concurrency control
techniques across storage media, and an opportunistic thread
combining scheme to achieve high bandwidth and low latency
for flash SSD reads. As a whole, Prism components work syn-
ergistically to maximize the advantages of individual storage
devices and suppress their disadvantages.

• We implemented Prism with DRAM, byte-addressable NVM (In-
tel Optane DCPMM), and flash SSDs. We thoroughly evaluate
Prism against state-of-the-art key-value stores. Our evaluation
shows that Prism outperforms other key-value stores by up to
13.1× in throughput. Also, Prism’s tail latency is shown to be
lower by up to 8.7×.

2 BACKGROUND AND MOTIVATION

2.1 Evolution of Storage Heterogeneity

For decades, the storage hierarchy has consisted of a performance
layer, providing superior performance in every aspect (e.g., band-
width, latency) at the cost of higher price, and a capacity layer,
offering ample capacity at lower price but with lower performance.
As such, flash SSDs and HDDs have respectively embodied the per-
formance and capacity layers. This clear division has successfully
balanced the performance and cost of a storage system. However,
such a dichotomy no longer applies to today’s storage devices.
Rapid evolution of storage hardware technologies has taken place,
including byte-addressable NVM (e.g., Intel Optane DCPMM [12]),
ultra-low-latency SSDs (e.g., Intel Optane SSD [40], Samsung Z-
SSD [77]), NVMe SSDs with faster PCIe connections (e.g., Gen 4 and
Gen 5 [5]), and CXL-based persistent memory expansion [25, 69], as
shown in Figure 1. We now compare NVM (Intel Optane DCPMM
specifically) and flash SSD along various dimensions such as per-
formance, scalability, and cost.
Performance. NVM provides DRAM-like access latency and en-
ables direct access using load and store instructions, eliminating the
storage stack overhead. Flash SSD has much higher latency than
NVM (50 us vs. 0.3 us). Also, the storage stack for flash SSD further
amplifies its access latency [91]. However, NVM possesses limited
bandwidth, which is even lower than PCIe Gen 4 SSDs (6.8GB/s
vs. 7GB/s for reads and 1.9GB/s vs. 5GB/s for writes). Moreover,
the bandwidth gap will continue to increase as upcoming SSDs
supporting PCIe Gen 5 will deliver even higher bandwidth (e.g.,
13GB/s for reads, 6.6GB/s for writes [5]).
Scalability. There is a clear limitation in scaling the capacity and
bandwidth of NVM by aggregating more NVM DIMMs in a server
as memory channels in a processor restrict memory slots [38]. In
contrast, the capacity and bandwidth of SSDs are linearly scalable
using a RAID controller [35]. The bandwidth gap between SSD and
NVM will become wider due to steady developments in PCIe and
SSD aggregation.
Capacity and endurance cost. While the cost ($/TB) of current
NVM is lower than DRAM, it is 27×- 40× more expensive than
flash SSDs. In terms of device lifespan, flash SSD has much lower
endurance than NVM (0.6 PBW1 vs. 292 PBW). Actually, Optane
1PBW: Peta Bytes Written.
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DCPMM’s endurance would be practically unlimited as it takes
about 5 years to reach the lifetime writes with the maximum write
bandwidth [41].
Insight #1. While NVM provides extremely low latency and very
high endurance, it has lower bandwidth than flash SSD. Moreover,
it is unrealistic to keep all data in NVM due to its high capacity cost
($/TB), the limitation in capacity and bandwidth scaling compared
to flash SSD. In summary, today’s storage devices cannot be easily
bisected into performance devices and capacity devices. Prior studies
have also made similar observations: “the storage hierarchy is not
a hierarchy” [88] and “the hierarchy is becoming a jungle” [38].
Based on the non-hierarchical nature of today’s storage devices,
we propose to consider NVM as a latency and endurance device
and SSD as a bandwidth and capacity device.

2.2 Managing the Storage Heterogeneity Today

Storage systems have traditionally employed hierarchical designs
to balance the performance and cost by leveraging the performance
and capacity layers (e.g., SSDs vs. HDDs) in a cost-effective manner.
The core question in hierarchical storage system design has been:
How to efficiently identify and place hot data into the performance
layer, aiming to maximize hits on performance devices [29, 49, 52, 73,
75, 80, 82, 93].

For managing such storage hierarchy, caching [16, 30, 67, 86]
and tiering [27, 34, 61, 78] have been widely used. With caching,
data is copied to a performance device from a capacity device when-
ever accessed. With tiering, data is not necessarily promoted to a
performance device immediately but rather hot data is identified
based on access patterns and promoted periodically.

LSM-tree based key-value stores [21, 45, 47, 89] have been ex-
tended to leverage the storage hierarchy, putting recently written
(i.e., likely frequently accessed) data into the performance device
in the upper layers. For instance, NoveLSM [47] places memtable
on NVM. SLM-DB [45] manages a global index in NVM and main-
tains SSTables on a single level unlike conventional LSM trees.
MatrixKV [89] proposes fine-grained column compaction using
NVM. SpanDB [21] exploits two types of SSDs (Performance SSD
and Capacity SSD) as a legacy storage hierarchy for cost-efficiency.
Nevertheless, LSM-tree compaction and the inefficient data travers-
ing still exist, significantly deteriorating the system performance.

Among file systems, Ziggurat [92] and Strata [53] leverage NVM
and SSD. Ziggurat [92] dynamically decides where to write to either
NVM or SSD based on system call patterns. Strata [53] first writes
to NVM log then the log is periodically digested to SSD. However,
they still treat NVM and SSD hierarchically so they traverse data
layer by layer, resulting in wasting CPU cycles. Also, overall system
performance may be bounded by storage devices with the lowest
performance.

In sum, it is clear that current hierarchical storage systems have
constraints in fully drawing the great potential of modern hetero-
geneous storage devices.
Insight #2. Hierarchical storage systems worked well for the con-
ventional storage hierarchy consisting of performance and capacity
layers. However, the hierarchical approach does not work well
on today’s heterogeneous storage devices. Traditional hierarchical
storage architecture cannot fully leverage each storage medium’s

k1 k4 k7

v4 v7
v7v1’’

............

Persistent
Write Buffer
(PWB)

Value Storage
Scan-aware
Value Cache
(SVC)

Persistent
Key Index

Heterogeneous
Storage Index 
Table
(HSIT) 

NVM

SSD

DRAM

v1’ ...

➌ ➍➋➊

......
... ...

Figure 2: Illustration of Prism storing three key-value pairs:

{k1,v1”}, {k4,v4}, and {k7,v7}. The Persistent Key Index

maps a key into the location of a corresponding value,

which could either be in the Persistent Write Buffer on

NVM (v1”) or in Value Storage on SSD (v4, v7). Values on

SSD can be cached to the Scan-aware Value Cache on DRAM

(v7). Prism decouples the Key Index from the value loca-

tion through the Heterogeneous Storage Index Table, mak-

ing cross-media crash consistency and concurrency control

simple and efficient.

individual strengths. Consider an example of placing hot data on
NVM: a storage system can leverage the low latency of NVM, but it
could end up suffering from NVM’s inherent limited bandwidth. In
the era of non-hierarchical storage systems, the design of storage
systems has diverse aspects to consider beyond simply placing “hot
data” on high-performance devices. Rather, a more fundamental
question should be: How should each component in a storage system
be designed to synergistically leverage the strengths of each storage
device while compensating for the weaknesses of each of them.

3 DESIGN GOALS OF PRISM

Synergistic interaction of heterogeneous storage devices.

We aim to realize the full potential of each storage medium to
maximize performance and cost-efficiency. In particular, we exploit
the following advantages: (1) SSD – high capacity and bandwidth
scaling with lower cost, (2) NVM – DRAM-like latency, high en-
durance, and better scaling and cost-efficiency than DRAM, and (3)
DRAM – lowest latency and highest bandwidth.
CPU efficiency and multicore scalability. Today’s storage de-
vices offers high performance so they are no longer the primary
performance bottleneck. Instead, the CPU has now become a new
major bottleneck. For instance, Lepers et al. [57] showed that many
optimization techniques (e.g., sorting, compaction, bloom filter) de-
veloped for conventional storage devices (e.g., HDD) are counterpro-
ductive, wasting CPU cycles and resulting in the CPU becoming the
performance bottleneck. In Prism, we consider the CPU-efficient
design, by minimizing the overhead of the software stack, especially
in critical paths, and aim to provide good multicore scalability with
concurrent requests.
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Cross-storagemedia crash consistency& concurrency. Crash
consistency is a vital aspect of storage systems. Thus, Prism requires
an efficient crash consistency mechanism for its components spread
across multiple storage devices. In addition, Prism must be capable
of supporting a high level of concurrency to maintain multicore
scalability and fully utilize low-latency or high-bandwidth stor-
age devices. In particular, we should avoid scenarios where one
slow device becomes a bottleneck in handling crash consistency or
concurrency control of the entire system.

4 DESIGN OVERVIEW OF PRISM

We introduce the five key components of Prism– (1) Persistent
Key Index on NVM, (2) Value Storage on SSDs, (3) Persistent Write
Buffer (PWB) onNVM, (4) Scan-aware Value Cache (SVC) onDRAM,
and (5) Heterogeneous Storage Index Table (HSIT) on NVM – as
illustrated in Figure 2. These five components are tightly integrated
to leverage the advantages of each storage device and compensate
for their respective disadvantages.

4.1 Persistent Key Index on NVM

Prism manages a Persistent Key Index, which is an NVM-optimized
range index that maps a key indirectly to a value location. A lookup
operation for a key requires frequent small-size data access [14,
62, 90], so a byte-addressable low-latency media is appropriate.
Since the space required for the Key Index grows as the data grows,
placing the Key Index on NVM is a reasonable choice for scaling and
cost-efficiency. In addition, thanks to the persistency characteristics
of NVM, it is possible to avoid the expensive crash consistency
mechanism, notably write-ahead logging on SSD, and excessive
storage scan operations during the recovery process.

One key challenge in designing Persistent Key Index is achieving
high multicore scalability. The problem is more severe in a hetero-
geneous storage system because, in the worst case, a single slow
storage device could determine the overall scalability. Many prior
studies [7, 46, 65], including KVell [57], choose the shared-nothing
design, which partitions all data structures (e.g., key index, cache)
and storage spaces per CPU core to avoid synchronization overhead.
However, the shared-nothing architecture is prone to suffer from
load imbalance among shards, especially for skewed data (§7.6). We
choose the following three techniques to deliver good multicore
scalability in Prism:
Central Persistent Key Index. Prism uses a central Persistent
Key Index to avoid the downsides of the shared-nothing approach
which manages a per-shard index. With recent advances in index
designs [50, 64, 66], a key index is no longer a scalability bottleneck.
In this work, we employ PACTree [50], a state-of-the-art persistent
range index. Note that our design is not dependent on a specific key
index design, so Prism can replace it with any other range index.
Leveraging low-latency NVM. Storing values on SSD could sig-
nificantly hamper the scalability of the Persistent Key Index because
the inherent high latency of SSDs can increase the time taken to pro-
cess a write-side critical section in the Persistent Key Index. Hence,
we leverage low-latency NVM – Persistent Write Buffer (PWB) (§4.3)
– for recently-written values, to prevent making SSD a bottleneck
without compromising crash consistency.

Decoupling Persistent Key Index from value locations. Stor-
age management tasks (e.g., garbage collection, data migration, etc.)
can hamper the scalability of the Persistent Key Index as well. Since
a key index entry maintains a value location, it should be updated
whenever the value location is changed. This typically requires lock-
ing to protect the Persistent Key Index from concurrent accesses
even if the Key Index just locks the affected leaf node, resulting in
limited multicore scalability. To avoid additional synchronization
overhead caused by the storage management tasks, we decouple
the Persistent Key Index from the value location by leveraging Het-
erogeneous Storage Index Table (HSIT) (§4.5), allowing values to be
moved independently from the Key Index.

4.2 Value Storage on Flash SSDs

Values are usually larger than keys in size, so they account for most
of the total storage space and require high storage bandwidth. Such
high space and bandwidth requirements correspondingly match
well with flash SSDs. Therefore we place the values on flash SSDs
separately from the keys on NVM. The main challenges lies in
(1) maximizing the SSD bandwidth while (2) minimizing latency
and (3) CPU consumption. Achieving all three requirements is a
challenging task. Batching more IO requests using asynchronous IO
libraries (e.g., libaio [2], SPDK [8]) increases bandwidth utilization,
but it also significantly increases tail latency due to queuing effects.
By batching fewer requests, latency can be reduced, but frequently
issuing IO requests underutilizes the bandwidth and incurs high
CPU overhead. To overcome the above challenges, we take different
approaches for read and write:
Read operation (lookup, scan). Our target is low-latency reads
from SSD while maintaining high SSD bandwidth utilization. We
opportunistically adjust the IO batch size for read operations ac-
cording to thread concurrency. When there are many concurrent
read requests to SSD, Prism increases IO batch size for high band-
width. On the other hand, Prism will reduce the IO batch size for
low latency under low levels of concurrency. We discuss the read
procedure in detail in §5.3. Besides, Prism also manages a DRAM
cache (§4.4) to reduce accessing the SSD for read-hot data.
Write operation (insert, update, delete). We minimize write
latency in the critical path and simultaneously maximize the SSD
bandwidth off the critical path. Prism first writes the value to low-
latency NVM – Persistent Write Buffer (PWB) (§4.3) – for immediate
durability. Later, in the background, Prism coalesces the values on
PWB and writes them back to Value Storage in a log-structured
manner which is suitable for SSD [72]. Prism performs all writes to
SSD asynchronously with a large batch size to reduce CPU overhead
(§5.2).

4.3 Persistent Write Buffer (PWB) on NVM

Unlike traditional logging techniques, Prism writes the values only
to the Persistent Write Buffer (PWB) on NVM. Prism manages a
PWB for each thread to avoid synchronization from concurrent
writes. The result is a shorter critical path, reducing write latency
significantly and scaling the Persistent Key Index. Any value in the
PWB is directly accessible from the Persitent Key Index through
the Heterogeneous Storage Index Table (HSIT) (§4.5), so PWB plays
the fast path for accessing recently written data.
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Figure 3: Scan-aware Value Cache (SVC). SVC uses 2Q LRU

with an active and inactive list for cache eviction. It sorts

and writes values in the same scan range (filled with a hatch

pattern) to Value Storage when one of them are evicted. This

increases spatial locality of values and improves the scan

performance by reducing SSD IO.

Prism writes values to PWB in an append-only manner. Thus,
PWBmay contain multiple values for the same key (v1’ and v1” for
k1 in Figure 2). In this case, Persistent Key Index always points to the
latest value in PWB through the HSIT ( 1 in Figure 2). Also, PWB
provides crash consistency for values by leveraging the durability
of NVM. As data gets written to PWB in an append-only manner,
old data within PWB is not overwritten. Thus, guaranteeing data
consistency in PWB is both easy and efficient (§5.5).

Reclamation for the PWB is triggered when its utilization reaches
a watermark (50% in our evaluation). During reclamation, values
in the PWB are asynchronously written to Value Storage on SSD,
and the application thread utilizes the remaining space in PWB for
further request processing, preventing the thread from blocking
during reclamation. Thanks to the append-only write manner, when
reclaiming PWB, Prismwrites only the latest version of a value (e.g.,
v1” in Figure 2) to Value Storage. This significantly reduces write
traffic to the SSD. Additionally, since NVM guarantees outstanding
endurance than flash SSD (§2.1), PWB helps to drastically extend
the lifespan of SSDs and Prism.

4.4 Scan-Aware Value Cache (SVC) on DRAM

We present Scan-aware Value Cache (SVC), which caches frequently
accessed read-hot values in DRAM to mitigate high-latency SSD
reads (e.g., choose 4 over 3 in Figure 2). SVC does not maintain a
separate index to lookup the cache, unlike prior work [52]. Instead,
the cached value is directly accessible from the Key Index through
HSIT ( 4 in Figure 2).
Reducing CPU overhead formanaging cache. Prism performs
most cache management off the critical path in the background.
Unlike conventional cache design serving both reads and writes,
Prism segregates writes from the cache, and uses PWB. A value
is admitted to SVC when it is neither found in the PWB nor the
SVC upon reading (i.e., only on reading the Value Storage on SSD).
Upon reading a value from SSD, Prism makes the DRAM copy of
the value immediately accessible by atomically updating HSIT in a
lock-free manner. After that, it enqueues a request to add the cached
value to an LRU list for victim selection. A background thread is in
charge of managing the cache, and it processes the requests to add
the newly cached value to the LRU list as well as to evict cached

values from SVC. Thus, cache management does not happen in the
critical path for Prism.
Efficient eviction policy. The SVC uses a 2Q LRU scheme [43]
with an active list and an inactive list (see Figure 3). SVC adds the
value to an inactive list when it first reads the value from SSD
( 1 ). Upon accessing the cached value a second time, the value
is promoted to the active list ( 2 ). When the active list becomes
too long, values from the tail of the active list are demoted to the
inactive list ( 3 ). Furthermore, when the cached values are about to
go beyond the designated DRAM capacity, SVC evicts values from
the inactive list ( 4 ). When a value is evicted from SVC, it is logically
deleted by disconnecting it from HSIT. Later, the SVC entry which
contains the evicted value is physically freed after ensuring that
no thread is accessing it using epoch-based reclamation (§5.4).
Accelerating scan operation. We repurpose SVC to speed up
scan operations. Our log-structured Value Storage appends any
values to the log, so values on SSD do not preserve spatial locality
in the key space. Hence, a scan operation entails more SSD IO.
In the worst case, each value in the scan range may reside on
different SSD pages. To reduce SSD IO, SVC enhances the spatial
locality of scan-intensive values by reorganizing them on SSD.
When Prism performs a scan operation, it copies the values in
the Value Storage to SVC (filled with a hatch pattern in Figure 3).
When one of the value in the same scan range is evicted, SVC sorts
and writes them together to the Value Storage ( 5 , 6 in Figure 3).
To efficiently identify the SVC entries corresponding to the same
scan range, Prism chains these SVC entries in a doubly-linked
list when scanned. Upon eviction of one of the entries from SVC,
Prism traverses the doubly-linked list associated with the evicted
entry that was formed during a prior scan operation. Hence, no
additional lookup is necessary to find values in the same range in
SVC. Conclusively, this way improves spatial locality of the values
in the scan-heavy key ranges and reduces SSD IO for subsequent
scan operations for the key range. As discussed, a background
thread is responsible for performing these tasks.

4.5 Heterogeneous Storage Index Table (HSIT)

on NVM

In Prism, values are scattered across heterogeneous storage devices
(NVM, SSD, and DRAM), and their location is subject to change
over time due to foreground and background activities, such as
write buffering, reclamation, and caching. The Heterogeneous Stor-
age Index Table (HSIT) is an indirection table, which manages the
value location across heterogeneous storage devices. Although the
indirection technique has been used in previous studies [59, 60],
we exploit HSIT as a foundation of Prism’s key innovations, in-
cluding 1) cross-media concurrency control, 2) lightweight crash
consistency, and 3) fast recovery.

Conceptually, HSIT is an array whose entry consists of value
addresses in PWB, Value Storage, and SVC, which we call forward
pointer. The Persistent Key Index maps a key to an array index
of HSIT (§4.1), and HSIT always points to the up-to-date value of
the corresponding key (see Figure 6). We pack the three forward
pointers into 16 bytes since a value can exist in only either PWB
or Value Storage. Note that, Prism caches values into SVC from
Value Storage, not from PWB, as it can access values on PWB with
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Figure 4: Asynchronous bandwidth-optimized write in

Value Storage. Value Storage consists of multiple chunks.

When PWB utilization hits the watermark ( 1 ), the up-

to-date values (v1, v2”, and v3) in the PWB ( 2 ) are asyn-

chronously written to a chunk in Value Storage ( 3 ). Each

chunk is fixed-size and stores values with their metadata

– each value’s backward pointer (i.e., a pointer to an HSIT

entry) and size ( 4 ). While reclaiming PWB, an application

thread can still write values (v4) to the rest of the PWB ( 5 ).

DRAM-like latency. We place HSIT in NVM since NVM provides
low latency, especially for small-sized data, and lightweight crash
consistency.

Besides holding value locations, HSIT plays a central role in
cross-media concurrency control and crash consistency. We pro-
pose a backward pointer-based crash consistency mechanism to effi-
ciently guarantee cross-media crash consistency without relying
on heavyweight logging. A value in PWB or Value Storage embeds
a backward pointer to its HSIT entry (see Figure 6). If the backward
pointer embedded in the value and the forward pointer in the HSIT
entry are well-coupled (i.e., they refer to each other), the value is
valid and up-to-date. Using this property, Prism efficiently achieves
concurrency control, crash consistency, and fast recovery (§5.4,
§5.5).

5 DETAILED DESIGN OF PRISM

5.1 Organization of Value Storage

Value Storage is a log-structured store on an SSD containing values.
It divides the space into fixed-size chunks for space management
( 3 in Figure 4). A chunk contains multiple values and metadata
associated with each value ( 4 ) – a backward pointer and value size
– for efficient crash recovery. To maximize the write bandwidth of
SSD, Prism performs writes in a chunk granularity whose size is
512 KB because large sequential writes are suitable for SSD [72].
Each chunk has a validity bitmap in DRAM, where each bit rep-
resents whether the corresponding value is valid (i.e., up-to-date)
or not (i.e., already outdated). The bitmap is updated whenever a
value on the chunk is written to a new location, either on PWB or
in another chunk. Since the bitmap is easily reconstructed through
HSIT when starting Prism (see §5.5), Prism places and manages
the validity bitmaps in DRAM. Meanwhile, Prism accesses Value
Storage through an asynchronous IO interface, io_uring [3], to

dynamically batch IO requests and also manages one Value Stor-
age per SSD to utilize aggregated SSD bandwidth by concurrently
accessing multiple Value Storages.

5.2 Asynchronous Bandwidth-Optimized Write

Asynchronous reclamation of PWB. When the PWB space us-
age crosses the watermark ( 1 in Figure 4), Prism triggers recla-
mation for the PWB. A background reclamation thread first scans
the PWB and collects up-to-date, live values ( 2 ). Prism checks
for each value if the backward pointer on PWB and the forward
pointer on HSIT refer to each other. If so, we call the value on PWB
is well-coupled. Note that while Prism requires two NVM reads at
this step, it does not give a negative impact on total performance,
because reclamation happens in the background and NVM provides
low access latency.

Since Prism updates an HSIT entry on every write, the well-
coupled value is an up-to-date and live value (e.g., v2” over v2’).
Prism writes the well-coupled, live values (v1, v2”, and v3) into
the Value Storage asynchronously chunk by chunk ( 3 ). Once the
writing completes, Prism updates the forward pointers in the HSIT
entries to point to the new value location on SSD. It also updates
the validity bitmap denoting that the newly written values on SSD
are valid. Upon updating the HSIT entries, the newly written values
are accessible from the Persistent Key Index.

Multiple threads can concurrently write to their designated
chunks on the same Value Storage. The reason is that allocating
a free (empty) chunk is the only critical section. Upon successful
allocation of the chunk, the critical section ends and the thread
independently writes the reclaimed values to each assigned chunk.
Therefore, no race condition exists when multiple threads in Prism
write to the same Value Storage. When there are multiple Value
Storages (on multiple SSDs), Prism randomly chooses one of the
idle Value Storages, which do not have in-flight requests on asyn-
chronous IO queues. This way, Prism aggressively utilizes the high
write bandwidth of SSD.
Garbage collection in Value Storage. When the number of free
chunks reaches below a threshold (i.e., the Value Storage utiliza-
tion exceeds a watermark), Prism triggers the garbage collection
on Value Storage. Through garbage collection, Prism secures free
chunks by merging live (i.e., up-to-date) values in two or more in-
use chunks, called victim chunks, so they can continue to serve
writes from the PWB. Unlike prior work [15, 22, 83], Prism decides
whether a value is garbage or not by checking the validity bitmap
without expensive key index traversal. Prism uses a greedy policy
in choosing victim chunks to be collected. A background garbage
collection thread chooses the chunks that have the smallest number
of live values (by checking the validity bitmap) as victims. The
live values in the victim chunks are copied to a new empty chunk.
Once the migration completes, Prism updates the corresponding
HSIT entries to point to the new value location and updates the
validity bitmaps accordingly. After the HSIT entries are updated,
victim chunks will not have any new accesses, allowing them to
be recycled as free chunks for future writes to the Value Storage.
Note that Prism performs garbage collection within the same Value
Storage.
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read in Value Storage. The leader thread ( 1 ) dynamically
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2 ). It submits the coalesced requests to Submission Queue

of Value Storage for asynchronous IO operation ( 3 ). Once

the IO requests are processed, the OS kernel posts comple-

tion messages to the Completion Queue ( 4 ).

5.3 Opportunistic Thread Combining for

Optimized Read

When a requested value does not exist in either on SVC or on PWB,
Prism has to read the value from Value Storage. The IO batch size in
our asynchronous IO approach determines the bandwidth, latency,
and CPU overhead. With a large IO batch, we can achieve high read
bandwidth and low CPU overhead at the expense of high latency.
On the other hand, a small IO batch allows for low read latency
while suffering from low read bandwidth and high CPU overhead.
Hence the primary challenge is determining the right IO batch size
dynamically to achieve low latency, high bandwidth, and low CPU
overhead.

To address the challenge, we propose an opportunistic thread
combining scheme for Value Storage read operations, as illustrated
in Figure 5. We use io_uring [3] in the Linux kernel for asynchro-
nous IO. Similar to other asynchronous IO frameworks, io_uring
exposes two queues, namely the Submission Queue (SQ) and Com-
pletion Queue (CQ). It does not block threads after the submission
(i.e., asynchronous IO). A SQ/CQ pair is responsible for a single
Value Storage.

Prism dynamically determines the IO batch size based on the
number of concurrent reads requested from application threads.
More concurrent reads from application threads mean a larger IO
batch size for higher read bandwidth and lower CPU overhead.With
fewer concurrent reads, a smaller batch size leads to lower read
latency. Prism manages a Thread Combining Queue (TCQ), which
lines up the concurrent threads requesting read operations to Value
Storage. The behavior of arranging incoming threads in TCQ is
inspired by the MCS queue lock [70]. A thread is first enqueued
into TCQ using an atomic swap operation on the TCQ Tail. If Tail
is null after the swap operation, the thread is at the head of TCQ
and takes the leader role ( 1 in Figure 5). Otherwise, it becomes a
follower ( 2 ) and passes its read request to the leader. The leader
coalesces its own and followers’ read requests by traversing the

TCQ. The coalesced requests are submitted to SQ ( 3 ) when there is
no more followers in the TCQ or it reaches to the coalescing limit
(i.e., queue depth: 64). As soon as the follower’s request is coalesced
by the leader, the follower returns immediately. The completion
of the batched read requests is notified later to CQ ( 4 ), and a
background completion thread polls the CQ to check whether there
are completed IO requests.

In summary, Prism opportunistically combines reads from mul-
tiple threads to a single read operation to aggressively utilize the
bandwidth and hide the high latency of SSD.

5.4 Cross-Media Concurrency Control

Atomic visibility of a value. In Prism, the Persistent Key Index
andHSIT are at the center of concurrency control. These centralized
components enforce visibility for a value as every value access goes
through them. A write operation in Prism is not visible until after
writing the value to the storage media and updating the HSIT
and Persistent Key Index. In other words, if an HSIT entry is not
accessible through the Persistent Key Index, the value will not be
visible to other threads. This implies that other threads will not
see any partial writes until the value gets completely written to
the storage media. Thus, updating an HSIT entry is a linearization
point [37].
Durable linearizable update of an HSIT entry. To guarantee
durable linearizability, unpersisted data should not be visible. Ac-
cordingly, an update operation in Prism is not visible until the
corresponding HSIT entry gets updated. Prism finishes an update
request by first making the fresh value persistent, followed by up-
dating the value’s address in the HSIT. For insert operation, after
performing the above steps, Prism addtionally updates the Key
Index to reflect the newly inserted HSIT entry.

In this protocol, when Prism updates anHSIT entry (e.g., forward
pointer), it uses atomic instructions (e.g., compare-and-swap or CAS).
This lock-free approach can provide high multicore scalability by
preventing HSIT updates from becoming a scalability bottleneck.
However, an atomic update of a pointer does not necessarily imply
that the updated pointer is persistent on NVM. The update may
have only reached the volatile CPU cache and can be lost upon a
power failure or crash. To guarantee atomicity and durability of a
pointer update, we update the forward pointer in HSIT using the
flush-on-read technique [26, 84, 85]. Prism encodes a dirty bit to an
unused bit into a forward pointer in HSIT entry. A writer records
the address of updated value with a dirty bit. The writer flushes the
pointer to guarantee durability, and then clears the dirty bit using an
atomic 8-byte CAS operation. When a reader detects that a forward
pointer is dirty (i.e., the pointer is written but not flushed yet), it
flushes the pointer first on behalf of the writer, then turns off the
dirty bit. In this way, Prism guarantees durable linearizability [42].
No write/write conflicts. All writes in Prism first go to a per-
thread PWB, so there are no write/write conflicts. Thus, insert and
update operations in Prism follow the concurrency control of the
Persistent Key Index.
Safe reclamation of a deleted value andHSIT entry. For delete
operations, Prism provides concurrent access to the HSIT, thus
making it essential to reclaim HSIT entries safely. A deleted HSIT
entry is added to the free list, a linked list for managing freed entries.
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pointer ( 4 , 4 ), invalidating the old forward pointer ( 2 , 2 ).

Prism efficiently guarantees cross-media crash consistency

with our pointer update protocol and append-only PWB

write policy.

For reclaiming HSIT entries, we use epoch-based reclamation [36,
48, 51, 68]. An epoch is a period such that all threads have finished
their current operations from begins. Prism waits for two epochs:
The first epoch ensures that no new thread accesses the deleting
HSIT entry. The second epoch guarantees that all the references
from the previous epoch have completed their access. Thus, the
HSIT entry is not accessible after two epochs and can be reclaimed.

5.5 Cross-Media Crash Consistency and

Recovery

Crash consistency using HSIT. We assume that the Persistent
Key Index ensures its own crash consistency, so Prism only needs to
guarantee the crash consistency between the Persistent Key Index
and values on PWB and Value Storage. Prism efficiently achieves
cross-media crash consistency using HSIT and PWB, as illustrated
in Figure 6. Prism first writes a value on PWB with an embedded
backward pointer ( 3 , 3 ) followed by updating a forward pointer
in HSIT ( 4 , 4 ). Once the forward pointer is updated to point to the
new value (v2’, v5’), the old value (v2, v5) becomes ill-coupled ( 1
vs. 4 , 1 vs. 4 ). If a crash happens after writing a value, but before
updating the forward pointer, the written value is not reachable
from the HSIT. Also, suppose a crash happens after writing a value
and updating the forward pointer, but before we persist the forward
pointer. In this case, the forward pointer is not persisted, so after
a restart, the forward pointer still points to the old value, and the
newly written value is not reachable. Prism determines whether a
value is unreachable by comparing its forward/backward pointers.
Fast recovery. As described in Figure 6, Prism knows where the
valid value is stored through only HSIT information. For recovery,
Prism first has to perform a full scan of the Persistent Key Index to
find reachable HSIT entries. Then, from those HSIT entries, Prism
finds out the PWB and Value Storage entries which contain valid
values. For PWB, it is sufficient to determine whether the backward
pointer and the HSIT entry are well-coupled or not. Meanwhile, for
Value Storage, Prism reconstructs the validity bitmap of each chunk
of Value Storage and nullifies all pointers in HSIT pointing to SVC.
Prism performs the recovery procedure concurrently for randomly
partitioned key ranges from the key index. In sum, our cross-media

Table 1: Configurations of key-value stores for evaluation.

Key-value Stores DRAM Cache NVM Buffer Total Cost

Prism 20 GB 16 GB $170
KVell [57] 32 GB None $170
MatrixKV [89] 26 GB 8 GB $170

Table 2: YCSB workload characteristics.

Workloads Characteristics

LOAD Write-only: 100% Inserts
YCSB-A Write-intensive: 50% Updates and 50% Reads
YCSB-B Read-intensive: 5% Updates and 95% Reads
YCSB-C Read-only: 100% Reads
YCSB-D Read-latest: 5% Updates and 95% Reads
YCSB-E Scan-intensive: 5% Updates and 95% Scans

crash consistency mechanism makes Prism can efficiently recover
without relying on heavyweight logging.

6 IMPLEMENTATION

Storage IO interface. We leverage io_uring [3] for efficient asyn-
chronous IO to the Value Storage. It is well-known that the io_uring
reduces the CPU overhead and boosts IO performance by minimiz-
ing expensive system calls. Prism uses the XFS filesystem and opens
Value Storage files with the O_DIRECT flag to enable concurrent dis-
joint accesses [71].
Persistent Key Index. We choose PACTree [50] for our Key Index
for its scalability and performance. PACTree is a persistent index
structure that uses asynchronous updates to maximize concurrency.
PACTree stores the keys in a packed manner to save the space
and bandwidth consumption of NVM. Recall that in Prism, its Key
Index can be replaced by another persistent index that supports
scan operations because Prism has no dependency on PACTree.

7 EVALUATION

7.1 Evaluation Methodology

Hardware environment. We use a two-socket Intel Xeon ma-
chine. Each socket has 20 CPU cores, six 128GB Intel OptaneDIMMs,
and 96GBDRAM. Storage devices consist of eight Samsung 980 PRO
1TB SSDs with two NVMe RAID Controllers HighPoint SSD7103.
For fair comparison, the competitors employ NVM and SSDs in
the form of RAID-0 through mdadm [4] and dm-strip [6] to fully
exploit the hardware. Also, we allocated their hardware resources
at the same cost levels as described in Table 1.
Configuration of key-value stores. For Prism, we created eight
Value Storages, one per SSD. Each Value Storage has its own thread
for asynchronous IO, handling its own IO queues for request batch-
ing (queue depth of 64 as KVell [57]).

We compare Prism with three LSM-tree based key-value stores
– MatrixKV [89], RocksDB-NVM [33], and SLM-DB [45] – and one
of sharding-based key-value store, KVell [57]. For MatrixKV which
leverages NVM and SSD, we set 8 GB NVM space for L0 in the LSM
tree, as shown in its paper. RocksDB-NVM is a modified RocksDB
storing all SSTables and WAL files in NVM. Certainly, its storage
cost spends much higher than Prism, but we use RocksDB-NVM as
a reference point showing the maximum performance of LSM-tree
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Figure 7: Throughput comparison for YCSB workloads.

Table 3: Latency comparison (`s) for YCSB workloads.

Workloads Latency Prism KVell MatrixKV RocksDB-NVM

YCSB-A
Average 44 231 123 141
Median 2 152 114 128
99% 145 1262 244 247

YCSB-C
Average 12 49 35 27
Median 1 44 28 23
99% 128 185 148 93

YCSB-E
Average 325 456 175 218
Median 270 484 92 128
99% 808 1215 1138 1132

based approaches. SLM-DB uses a small portion of NVM (64MB)
for memtable and the rest for its index structure. Also, the open-
sourced SLM-DB only supports single-threaded execution. For the
fair comparison with SLM-DB, we also configured Prism to use 64
MB of DRAM (SVC) and 64 MB of NVM (PWB) and ran experiments
on a single thread. Lastly, KVell uses DRAMand SSD (without NVM).
We configured KVell’s DRAM cache size to 32 GB so that KVell and
Prism have the same cost. For KVell, we created 16 injector threads
to issue queries and three worker threads per SSD with IO queue
depth of 64. To control the DRAM usage for fair comparison, we
used each key-value store’s DRAM cache and turned off the page
cache in OS with the O_DIRECT flag except for SLM-DB. Since SLM-
DB does not support the direct IO, it uses the page cache in OS and
consumes more memory. For all other configuration parameters,
if not mentioned, we used the same parameters described in their
papers.
Workload configuration. We use YCSB [24] workloads with Zip-
fian distribution (Zipfian coefficient: 0.99) (see Table 2) as real-world
workloads with skewed distribution [18]. We set the size of a key-
value item to 1 KB. We load 100 million key-value pairs in random
order and perform 100 million operations for all workloads except
workload E. For Workload E, we perform 20 million scan operations
with an average scan length of 50. Meanwhile, due to the instabil-
ity of SLM-DB, we index 8 million key-value items and conduct 2
million operations for SLM-DB evaluation.

7.2 Prism vs. MatrixKV and RocksDB-NVM

Write-intensive workload. Figure 7 and Table 3 show the
throughput and latency comparison with total 40 threads, respec-
tively. Prism outperforms MatrixKV and RocksDB-NVM by up to
13.1× with up to 3.2× lower average latency under Workload A.
Even when we configured Prism to use the identical DRAM cache
(26GB) and NVM buffer (20GB) sizes with MatrixKV, Prism outper-
forms MatrixKV by up to 10.8×. Even with NVM, MatrixKV and
RocksDB-NVM still suffer from expensive compaction operations.
In contrast, Prism does not require level-compaction. Furthermore,
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Figure 8: Throughput of Prism and SLM-DB.

Table 4: Latency (`s) of Prism and SLM-DB.

Workloads Latency Prism SLM-DB

YCSB-A
Average 30 122
Median 2 18
99% 90 1363

YCSB-C
Average 25 10
Median 1 4
99% 96 42

YCSB-E
Average 231 233
Median 229 89
99% 796 1394

Prism’s PWB, being a per-thread write buffer, avoids contention
among threads and coalesces small writes into large block sizes,
resulting in superior performance.
Read-intensive workload. Prism shows 4.8–5.5× higher
throughput than LSM-tree based key-value stores in read-intensive
Workloads B, C, and D because managing values without keys in
the SVC results in more efficient caching. Moreover, the lookup
operation in Prism efficiently uses CPU resource, not traversing
multiple levels to find a key-value pair as done in LSM-tree based
approaches. As shown in Table 3, Prism’s latency is lower than Ma-
trixKV and RocksDB-NVM primarily due to efficient caching in the
SVC and asynchronous low-latency reads from the Value Storage.
Meanwhile, MatrixKV and RocksDB perform IO submission and
completion synchronously unlike Prism, so they suffer from high
latency.
Scan-intensive workload. In Workload E (95% scan and 5% write
operations), Prism outperforms MatrixKV and RocksDB-NVM in
throughput (up to 1.4×) and tail latency. SVC writes evicted val-
ues in a range query to the same chunk in Value Storage. This
makes future scan operations more efficient. Also, as MatrixKV and
RocksDB-NVM are hierarchical storage systems, a scan operation
may traverse every level of the LSM-tree to find the values for the
keys in the range query. This traversal overhead deteriorates the
scan operations.

7.3 Prism vs. KVell

Write-intensive workload. In Workload A, Prism outperforms
KVell by 1.3× while delivering 8.7× lower tail latency. This is be-
cause Prism leverages PWB on NVM to reduce latency and SSD
write amplification. KVell delivers good performance via batching
IO requests, but queuing amplifies and worsens tail latency sig-
nificantly (see Table 3). Moreover, KVell has to read-modify-write
to update data when the data is not cached on DRAM. Thus, it
causes more frequent accesses to SSD, thereby increasing latency
significantly.
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Read-intensiveworkload. ForWorkloads B and C, Prism outper-
forms KVell by 1.2× and 1.3×, respectively. This performance gain
comes from our SVC design that caches individual values while
KVell’s cache manages its data in page granularity (4KB). Also,
some IO workers in KVell can become the performance bottleneck
under high data skew as KVell partitions the entire key space using
hashing. Furthermore, KVell always enqueues requests to worker
threads for IO batching even in the case the requested data is al-
ready cached in DRAM. The queuing effect amplifies the latency
for cached data (see Table 3). In contrast, Prism directly accesses
the SVC on DRAM via HSIT. The tail latency of Prism is also lower
than KVell by 1.5× in Workload C. Prism submits read requests to
the SSDs even when the IO queue of each thread is not full, thereby
minimizing the idle time of SSDs. Unlike Prism, KVell’s worker
threads not only submit IO requests to storage devices but also
traverse the indexes, which adds up to the latency. In Workload
D, Prism outperforms KVell by 1.7×. Prism has a high probability
of reading data from the PWB as it handles write requests on the
PWB.
Scan-intensive workload. Prism provides better throughput and
latency than KVell by 2.3× and 1.5×, respectively, as shown in
Workload E of Figure 7 and Table 3. KVell incurs more IOs to the
SSD for a given key range. However, Prism’s SVC efficiently merges
values in the same key range into the same chunk, reducing SSD
IO.

7.4 Prism vs. SLM-DB

We ran SLM-DB and Prism only in a single-threaded environment
because the open-source version of SLM-DB does not support multi-
threading. Note that SLB-DB consumes more memory than Prism
(and all other tested key-value stores) because it does not support
direct IO (O_DIRECT) so it leverages the page cache in OS.
Write-intensive workload. Prism outperforms SLM-DB by up to
22.7× in write-intensive workloads, as depicted in Figure 8 and Ta-
ble 4. Although SLM-DB has a single-level storage layer, it still
requires compaction operations frommemtable to SSD that degrade
its performance. Also, it lacks design considerations for asynchro-
nous IO batching to exploit the high bandwidth of SSDs, thereby
not utilizing the potential of heterogeneous storage devices.
Read-intensive workload. For YCSB Workloads B, C, and D,
Prism achieves an order of magnitude higher throughput than SLM-
DB, up to 14.4× in Workload D. This is because Prism can handle
read requests within a short critical path in NVM. For Workload C,
SLM-DB shows lower average and tail latency than Prism because
SLB-DB uses the OS page cache (not supporting direct IO) so it
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Figure 10: Performance in YCSB with a 1-billion KV pairs

and Nutanix production workloads.

consumes more memory (i.e., not apple-to-apple comparison with
Prism). Even though SLM-DB leverages the OS page cache, Prism
shows comparable performance to SLM-DB.
Scan-intensive workload. Prism delivers throughput up to 2.5×
that of SLM-DB in Workload E, as shown in Figure 8. Our SVC
reduces the number of IOs issued to Value Storage.

7.5 Performance under Other Workloads

YCSB workloads with 1 billion KV items. We also conducted
performance evaluations using larger YCSB workloads containing a
1 TB dataset (1B KV pairs), as shown in Figure 10(a). As mentioned
earlier, Prism uses a smaller DRAM cache than KVell, which con-
sists of only DRAM and SSDs to ensure identical hardware costs for
both systems. Despite it, Prism achieves 1.3× higher performance
than KVell under the YCSB-C workload. The efficacy of our SVC
and opportunistic thread combining are the key contributors on im-
proving read performance. Overall, the experimental results show
that Prism outperforms KVell by up to 2.42× for this workload.
Nutanix production workloads. Besides YCSB workloads, we
compared Prism and KVell with the production workloads from
Nutanix, as presented in Figure 10(b). This workload tends to be
rather write-intensive: 57% Updates, 41% Reads, and 2% Scans. In
this case, Prism shows 1.44× higher performance.

7.6 Understanding Prism Performance

Impact of data skewness. A recent study shows that real-world
workloads exhibit strong access skew [18, 87]. Figure 9 shows the
performance of Prism and other key-value stores with varying
data skewness. The relative performance is normalized to the per-
formance when the Zipfian coefficient is 0.99. Prism effectively
manages the read/write hot data by leveraging PWB and SVC, re-
sulting in throughput improves as skewness increases in all YCSB
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skewness.

workloads. We also investigate performance trends of LSM-based
key-value stores that adopt a hierarchical structure. They show
better performance as data skewness increases, as shown in Fig-
ure 9. This performance gain comes from the increased chance of
accessing data in the memtable or their internal block cache within
the memory layer. KVell’s throughput drops as skewness increases
load imbalance and creates a few hot spots. Hence, some worker
threads are overloaded and become the performance bottleneck un-
der skewed data access. This load imbalance is an inherent problem
of partitioning-based architectures [17, 63].
Opportunistic thread combining for read. We evaluate the
effectiveness of our thread combining technique using YCSB Work-
load C while varying the queue depth (QD, the coalescing limit).
Figure 11 presents the throughput and latency as QD varies in
two different settings; One is using our thread combining tech-
nique (§5.3, abbreviated to TC) and another is using timeout-based
asynchronous IO processing (abbreviated to TA). TA waits for sub-
sequent read requests for a certain period (100`s in this evaluation)
and submits the requests to storage if there is no more incom-
ing request. The experimental results show that the performance
gap between TC and TA gets larger as QD increases. Also, thread
combining with QD of 64 delivers up to 11.7× higher throughput
and 1.9× lower response time than when using a single QD. This
confirms Prism’s thread combining can handle I/O requests from
multiple threads at once with high SSD IO utilization.
Write amplification (WAF). We measure the write amplification
in SSDs for updating a 100GB dataset with variable sizes of key-
value pairs (512B and 1KB). Figure 12 shows that Prism has the
lowest SSD-level write amplification as PWB absorbs small IOs and
merges them into large chunk-sized IOs to the SSD. MatrixKV has
high write amplification, up to 162× of Prism, due to compaction
operations of the LSM-tree. KVell also shows high write amplifica-
tion, up to 13× of Prism, because KVell performs IO operations in
page granularity. As data skewness increases, write amplification
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decreases for Prism and KVell due to increased opportunities to
coalesce IO requests for the same data. In contrast, MatrixKV shows
higher write amplification as the skewness increases due to the
compaction in LSM-tree.
Number of SSDs. We measured the throughput of Prism and
KVell with write-intensive Workload A and read-intensive Work-
load C while varying the number of aggregated SSDs in Figure 13.
In the write-intensive Workload A, Prism provides higher through-
put than KVell irrelevant to the number of SSD attached, thanks
to Prism’s PWB and scalable centralized components. Even in the
read-intensive Workload C, Prism delivers better throughput and
latency. Only in the case of the number of SSDs being less than
4, KVell provides higher throughput than Prism as shown in Fig-
ure 13(b). This is because KVell employs special threads that inject
IO requests into the queue to batch read requests more aggres-
sively. Although, KVell offers better read throughput in the case of
a small number of SSDs, note that Prismwhich exploits opportunis-
tic thread combining for handling read requests, always provides
lower latencies than KVell, as shown in Figure 14.
Size of Persistent Write Buffer. The size of PWB is closely re-
lated to the write performance of Prism as every value is written
first to the PWB. As shown in Figure 15(a), in LOAD workload,
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we can find out Prism’s performance shows stable because Prism
successfully migrates values from PWB to Value Storage using the
background thread. InWorkload A, as the size of the PWB increases,
the throughput also increases because PWB absorbs more write
requests. Considering the large capacity of NVM, modern hetero-
geneous storage systems can sufficiently carry out higher write
performance.
Size of Scan-aware Value Cache. We evaluated the performance
of lookup and scan operations while varying the size of SVC. Fig-
ure 15(b) shows that a larger SVC improves performance. Even with
4GB SVC (only 20% of 20GB SVC), Prism shows 55% read and scan
performance compared to 20GB SVC. We confirmed that Prism’s
value-granule caching is more effective than page-granule caching
used in prior work [57].
Multicore scalability. We measure the multicore scalability of
Prism with varying the number of cores. Prism scales near linearly
as the number of cores increases in all workloads due to its efficient
concurrency control and lightweight data consistency mechanisms,
as shown in Figure 16. Note that, in Workload C, Prism always
shows lower latency than KVell in all settings (either QD is 64 or
1).
Impact of garbage collection in Value Storage. Garbage collec-
tion (GC) in Prism reclaims free space for Value Storage when there
is no enough free space in each Value Storage. In our evaluation,
GC does not significantly affect the Prism’s performance, as shown
in Figure 17 as Prism supports non-blocking access to values in
Value Storage via HSIT. Moreover, GC is performed in each Value
Storage independently.
Impact of individual techniques. We conduct a performance
breakdown to evaluate the impact of each technique proposed. Our
asynchronous bandwidth-optimized writes (§5.2) deliver up to 23%
performance improvement for write-intensive workloads. Further-
more, it minimizes the performance fluctuations due to garbage
collection, as shown in Figure 17. Using opportunistic thread com-
bining (§5.3) gains 11.7× performance improvement in read-only

workloads. SVC enhances the lookup and scan throughput by up
to 9.6× and 4.4×, respectively. Moreover, its accelerated scan op-
eration (§4.4) derives a performance improvement of nearly 10%
rather than not being used.
Size of NVM space. We measure the space overhead of our NVM
components: Persistent Key Index and HSIT. For 100 million key-
value pairs, Prism requires a total of approximately 5.4 GB of NVM
space. We believe it is a reasonable size considering the large ca-
pacity of NVM.
Recovery time. We measured the recovery time in Prism and
KVell.We injected system crashes after inserting 100 GB of a dataset,
similar to previous studies [56, 58]. Prism spends about 6.9 seconds
to recover all key-value pairs, while KVell which consists of DRAM
and SSDs takes 10.4 seconds. KVell needs to scan the entire SSD, so
recovery time can seriously deteriorate depending on the perfor-
mance and number of storage devices.

8 DISCUSSION

We found that NVM has many characteristics that are helpful for
designing heterogeneous storage systems. It provides higher ca-
pacity than DRAM, very high endurance compared to SSD, and
low latency. Through the comparison evaluations between Prism
and DRAM-SSD configuration (i.e., KVell), we demonstrate the use-
fulness of NVM. As seen in §7, Prism outperforms conventional
systems significantly for write-intensive workloads as PWB absorbs
writes to the SSD. Also, Prism shows significantly lower SSD WAF
than KVell. That is, using NVM can significantly extend the span of
SSD lifetime. Lastly, NVM enables fast recovery without scanning
the entire SSD, thanks to the persistency characteristics of NVM,
resulting in Prism ’s recovery being much faster than KVell.

We believe the lessons from Prism apply to other emerging
storage media. Practically, today’s storage media is more diverse
than we anticipate: (1) QLC SSD, ZNS SSD, and remote flash for
compute-storage disaggregation – high bandwidth and low capac-
ity cost, (2) CXL-based (battery-backed) NVM – low access latency,
byte-addressability, and non-volatility. Lastly, (3) Samsung’s re-
cently released Memory-Semantic CXL SSD – byte-addressable and
block-addressable access with CXL.mem and CXL.io, respectively.
Considering the modern storage landscape, we set out to answer
the questions: how to design an efficient heterogeneous storage
system while utilizing the low latency byte-addressable storage and
how to hide the high latency of slow storage devices and software
overhead by leveraging concurrent access. Above all, we present
novel approaches to cross-media concurrency control, crash consis-
tency, and recovery, enabling efficient amalgamation of the diverse
storage devices within a single system.

9 CONCLUSION

We presented Prism, a key-value store built for modern heteroge-
neous storage devices. Prism copes with the increasing diversity of
storage devices and exploits the capabilities of each storage device
(e.g., low latency of NVM, high bandwidth of SSD). At the center
of Prism’s design lies a careful interplay between a low latency
storage device and a high bandwidth storage device that enables
Prism to achieve the best of both worlds. Prism maintains multi-
core scalability and crash consistency across heterogeneous storage
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devices using efficient concurrency control and crash consistency
protocols. Our extensive evaluation shows significant performance
improvements against the state-of-the-art techniques for various
real-world workloads.
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