
Protect the System Call,
Protect (most of) the World with

BASTION
Christopher Jelesnianski, Mohannad Ismail, Yeongjin Jang*,

Dan Williams, Changwoo Min

*

Takeaway
● System Calls are important

○ Core API interface between processes and the Operating System

○ Prevalent medium for code reuse to compromise entire system from a vulnerable application

● Minimal guarding of System Calls
○ Linux seccomp

○ Eliminating surface area instead of eliminating abuse

○ Coarse-grained defenses

● System Call Integrity: A targeted methodology to shore up system call defenses
○ Protection of the system, not protection of the application

○ Fine-grained & specialized protection that is efficient and strong

2

Medium for Critical Attacks
● Many code re-use attacks end-goal require leveraging a system call

○ Memory vulnerabilities continue to persist
○ Attacker intermediate steps may cause undefined behavior in application
○ But, cannot leave application process scope without system call

● Majority system calls are non-security sensitive

3

fstat

uname

tee
getrlimit

exit

epoll_wait

close_range

getfattr

Attack surface of
Linux System Calls

OS Scope
mprotect

mmap

execve
fork

chmod

Process 1 Process … Process N

Medium for Critical Attacks
● Many code re-use attacks end-goal require leveraging a system call

○ Memory vulnerabilities continue to persist
○ Attacker intermediate steps may cause undefined behavior in application
○ But, cannot leave application process scope without system call

● Majority system calls are non-security sensitive

4

fstat

uname

tee
getrlimit

exit

epoll_wait

close_range

getfattr

Attack surface of
Linux System Calls

mprotect
mmap

execve
fork

chmod
OS Scope

Process … Process NProcess 1

Medium for Critical Attacks
● Many code re-use attacks end-goal require leveraging a system call

○ Memory vulnerabilities continue to persist
○ Attacker intermediate steps may cause undefined behavior in application
○ But, cannot leave application process scope without system call

● Majority system calls are non-security sensitive

5

fstat

uname

tee
getrlimit

exit

epoll_wait

close_range

getfattr

Attack surface of
Linux System Calls

mprotect
mmap

execve
fork

chmod
OS Scope

Process … Process NProcess 1

System Call Defenses (and why they don’t do enough)

Defenses
● Linux seccomp

- Linux deployed coarse-grained allowlist/denylist

● Automated System Call Filtering
- sysfilter: Automated system call filtering for commodity software [RAID’20]

● Refined Whitelisting
- Temporal System Call Specialization [USENIX Sec’20]

Bottom Line
● Coarse-grained filtering is not sufficient
● System calls cannot be disabled because of core process necessity

○ Coincidently are targeted for attacker abuse
○ e.g., execve, mmap, mprotect

● Instead of finding system call minimal set, find meaningful context surrounding system calls!

6

execve(ctx->path, ctx->argv, ctx->envp);

Our Work: Introduction of System Call Integrity

7

execve(ctx->path, ctx->argv, ctx->envp);

Our Work: Introduction of System Call Integrity
● System Call Integrity

○ Comprised of three contexts
○ Based on attacker pattern insight

Attacker Pattern Insight:
1. How are system calls invoked?
2. How are system calls reached?
3. What is passed to system calls?

8

execve(ctx->path, ctx->argv, ctx->envp);

Our Work: Introduction of System Call Integrity
● System Call Integrity

○ Comprised of three contexts
○ Based on attacker pattern insight

Attacker Pattern Insight:
1. How are system calls invoked?
2. How are system calls reached?
3. What is passed to system calls?

9

1

Call-Type Context
Is this system call allowed to be
called indirectly?

execve(ctx->path, ctx->argv, ctx->envp);

Our Work: Introduction of System Call Integrity
● System Call Integrity

○ Comprised of three contexts
○ Based on attacker pattern insight

Attacker Pattern Insight:
1. How are system calls invoked?
2. How are system calls reached?
3. What is passed to system calls?

10

2
1

Call-Type Context
Is this system call allowed to be
called indirectly or at all?

Control-Flow Context
Does the live stack trace match
expected program control-flow?

Our Work: Introduction of System Call Integrity
● System Call Integrity

○ Comprised of three contexts
○ Based on attacker pattern insight

Attacker Pattern Insight:
1. How are system calls invoked?
2. How are system calls reached?
3. What is passed to system calls?

execve(ctx->path, ctx->argv, ctx->envp);

11

2
1 3

Argument Integrity Context
Are any arguments corrupted?

Call-Type Context
Is this system call allowed to be
called indirectly?

Control-Flow Context
Does the live stack trace match
expected program control-flow?

Example

1 void foo (int f0){
2

3 int flags = MAP_ANON|MAP_SHARED;
4 bar(x1, flags);
5 ...
6 }
7 void bar (char* b1, int b2){
8 int prots = PROT_READ|PROT_WRITE;
9 mmap(NULL, gshm->size, prots, b2,

-1, 0);
10 ...
}

System Call Integrity - 1 - Call Type Context
Guarantee: Only permitted system calls are
allowed to be called in their expected manner

● Assigned Per-System-Call
● 3 Types

12

Example

1 void foo (int f0){
2

3 int flags = MAP_ANON|MAP_SHARED;
4 bar(x1, flags);
5 ...
6 }
7 void bar (char* b1, int b2){
8 int prots = PROT_READ|PROT_WRITE;
9 mmap(NULL, gshm->size, prots, b2,

-1, 0);
10 ...
}

System Call Integrity - 1 - Call Type Context
Guarantee: Only permitted system calls are
allowed to be called in their expected manner

● Assigned Per-System-Call
● 3 Types

13

Not-Callable

Example

1 void foo (int f0){
2

3 int flags = MAP_ANON|MAP_SHARED;
4 bar(x1, flags);
5 ...
6 }
7 void bar (char* b1, int b2){
8 int prots = PROT_READ|PROT_WRITE;
9 mmap(NULL, gshm->size, prots, b2,

-1, 0);
10 ...
}

System Call Integrity - 1 - Call Type Context
Guarantee: Only permitted system calls are
allowed to be called in their expected manner

● Assigned Per-System-Call
● 3 Types

14

Not-Callable

Directly
Callable
traditional
direct call

Example

1 void foo (int f0){
2

3 int flags = MAP_ANON|MAP_SHARED;
4 bar(x1, flags);
5 ...
6 }
7 void bar (char* b1, int b2){
8 int prots = PROT_READ|PROT_WRITE;
9 mmap(NULL, gshm->size, prots, b2,

-1, 0);
10 ...
}

System Call Integrity - 1 - Call Type Context
Guarantee: Only permitted system calls are
allowed to be called in their expected manner

● Assigned Per-System-Call
● 3 Types

15

Not-Callable

Directly
Callable
traditional
direct call

Indirectly-Callable
code pointers

Example

1 void foo (int f0){
2

3 int flags = MAP_ANON|MAP_SHARED;
4 bar(x1, flags);
5 ...
6 }
7 void bar (char* b1, int b2){
8 int prots = PROT_READ|PROT_WRITE;
9 mmap(NULL, gshm->size, prots, b2,

-1, 0);
10 ...
}

Applicable to
All System Calls

System Call Integrity - 1 - Call Type Context
Guarantee: Only permitted system calls are
allowed to be called in their expected manner

● Assigned Per-System-Call
● 3 Types

16

Not-Callable

Directly
Callable
traditional
direct call

Indirectly-Callable
code pointers

Example

1 void foo (int f0){
2

3 int flags = MAP_ANON|MAP_SHARED;
4 bar(x1, flags);
5 ...
6 }
7 void bar (char* b1, int b2){
8 int prots = PROT_READ|PROT_WRITE;
9 mmap(NULL, gshm->size, prots, b2,

-1, 0);
10 ...
}

Applicable to
All System Calls

Sensitive System Calls Only

System Call Integrity - 1 - Call Type Context
Guarantee: Only permitted system calls are
allowed to be called in their expected manner

● Assigned Per-System-Call
● 3 Types

17

Not-Callable

Directly
Callable
traditional
direct call

Indirectly-Callable
code pointers

Example

1 void foo (int f0){
2

3 int flags = MAP_ANON|MAP_SHARED;
4 bar(x1, flags);
5 ...
6 }
7 void bar (char* b1, int b2){
8 int prots = PROT_READ|PROT_WRITE;
9 mmap(NULL, gshm->size, prots, b2,

-1, 0);
10 ...
}

Applicable to
All System Calls

Sensitive System Calls Only

System Call Integrity - 1 - Call Type Context
Guarantee: Only permitted system calls are
allowed to be called in their expected manner

● Assigned Per-System-Call
● 3 Types

18

Not-Callable

Directly
Callable
traditional
direct call

Indirectly-Callable
code pointers

Example

1 void foo (int f0){
2

3 int flags = MAP_ANON|MAP_SHARED;
4 bar(x1, flags);
5 ...
6 }
7 void bar (char* b1, int b2){
8 int prots = PROT_READ|PROT_WRITE;
9 mmap(NULL, gshm->size, prots, b2,

-1, 0);
10 ...
}

Applicable to
All System Calls

Sensitive System Calls Only

System Call Integrity - 1 - Call Type Context
Guarantee: Only permitted system calls are
allowed to be called in their expected manner

● Assigned Per-System-Call
● 3 Types

19

Not-Callable

Directly
Callable
traditional
direct call

Indirectly-Callable
code pointers

System Call Call Type

mmap Directly-Callable

mprotect Not-CallableSensitive system call use is sparse
& rarely invoked indirectly.

Example

1 void foo (int f0){
2

3 int flags = MAP_ANON|MAP_SHARED;
4 bar(x1, flags);
5 ...
6 }
7 void bar (char* b1, int b2){
8 int prots = PROT_READ|PROT_WRITE;
9 mmap(NULL, gshm->size, prots, b2,

-1, 0);
10 ...
}

20

System Call Integrity - 2 - Control Flow Context
Guarantee: A sensitive system call is
reached and invoked only through
legitimate control-flow paths during
runtime

Example

1 void foo (int f0){
2

3 int flags = MAP_ANON|MAP_SHARED;
4 bar(x1, flags);
5 ...
6 }
7 void bar (char* b1, int b2){
8 int prots = PROT_READ|PROT_WRITE;
9 mmap(NULL, gshm->size, prots, b2,

-1, 0);
10 ...
}

21

System Call Integrity - 2 - Control Flow Context
Guarantee: A sensitive system call is
reached and invoked only through
legitimate control-flow paths during
runtime

Valid Control Flow

 bar < foo

 mmap < bar

 ...

Call chains of sensitive system
calls are usually short!

Guarantee: A sensitive system call can
only use valid arguments when being
invoked
● Even if attackers have access to

memory corruption vulnerabilities

22

System Call Integrity - 3 - Argument Integrity Context
Example

1 void foo (int f0){
2

3 int flags = MAP_ANON|MAP_SHARED;
4 bar(x1, flags);
5 ...
6 }
7 void bar (char* b1, int b2){
8 int prots = PROT_READ|PROT_WRITE;
9 mmap(NULL, gshm->size, prots, b2,

-1, 0);
10 ...
}

Argument Type Coverage
● Constants
● Global Variables
● Local Variables
● Caller Parameters

Call depth to set system call arguments
is fairly shallow – within the same
function or only a few functions away.

BASTION Runtime Monitor

User Application

BASTION Overview - System Call Integrity in Practice

23

Operating System

Every Sensitive
System Call

intercepted by
BASTION

BASTION Compiler

● Static analysis

● Record metadata

● Sensitive variable
instrumentation

● Separate process

● Leverage context metadata

● Dynamic context checking

Procedure
● Instrumented as inline assembly
● Use variable use-def chains derived

from LLVM IR
● Static and dynamic variable support

1 void foo (int f0){
2
3
4 int flags = MAP_ANON|MAP_SHARED;
5
6
7 bar(x1, flags);
8 ...
9 }
10 void bar (char* b1, int b2){
11
12 int prots = PROT_READ|PROT_WRITE;
13
14
15
16
18
19
20
21
22 mmap(NULL, gshm->size, prots, b2, -1, 0);

...

BASTION Compiler - Argument Integrity Context

24

Instrumentation

1 void foo (int f0){
2
3
4 int flags = MAP_ANON|MAP_SHARED;
5
6
7 bar(x1, flags);
8 ...
9 }
10 void bar (char* b1, int b2){
11
12 int prots = PROT_READ|PROT_WRITE;
13
14
15
16
18
19
20
21
22 mmap(NULL, gshm->size, prots, b2, -1, 0);

...

BASTION Compiler - Argument Integrity Context

25

ctx_write_mem(&b2, sizeof(int));

ctx_write_mem(&prots, sizeof(int));

ctx_write_mem(&flags, sizeof(int));

Procedure
● Instrumented as inline assembly
● Use variable use-def chains derived

from LLVM IR
● Static and dynamic variable support

ctx_write_mem()
● Added at each argument write operation

InstrumentationInstrumentation

1 void foo (int f0){
2
3
4 int flags = MAP_ANON|MAP_SHARED;
5
6
7 bar(x1, flags);
8 ...
9 }
10 void bar (char* b1, int b2){
11
12 int prots = PROT_READ|PROT_WRITE;
13
14
15
16
18
19
20
21
22 mmap(NULL, gshm->size, prots, b2, -1, 0);

...

ctx_bind_mem_2(&flags);

ctx_bind_const_1(NULL);
ctx_bind_mem_2(&gshm->size);
ctx_bind_mem_3(&prots);
ctx_bind_mem_4(&b2);
ctx_bind_const_5(-1);
ctx_bind_const_6(0);

BASTION Compiler - Argument Integrity Context

26

ctx_write_mem(&b2, sizeof(int));

ctx_write_mem(&prots, sizeof(int));

ctx_write_mem(&flags, sizeof(int));

ctx_write_mem()
● Added at each argument write operation

ctx_bind_mem()/ctx_bind_const()
● Stages expected values for performing

runtime checking

Instrumentation

Procedure
● Instrumented as inline assembly
● Use variable use-def chains derived

from LLVM IR
● Static and dynamic variable support

Operating System

Monitor User Application

BASTION Design - Monitor Component
Monitor Goals:

● Act as liaison between application and OS
○ Safeguard system calls from arbitrary use!

● Separate process
○ Isolates BASTION from untrusted application!
○ Attacker cannot bypass/disable BASTION

hooks
● Only check contexts when system call invoked

○ Minimize interference for max performance!

27

BASTION Runtime Monitor

Context
Metadata

Process State Information

PC &
code Stack Registers &

InstrumentationChecking
Mechanism

mmap()
invoked

mmap()
completed

Runtime Monitor Procedure

BASTION Prototype Implementation
● BASTION Compiler

○ LLVM 10.0.0
○ ~4K LoC

● BASTION Library API
○ ~700 LoC

● BASTION Monitor
○ ~8K LoC
○ seccomp-BPF
○ ptrace

● System
○ X86-64
○ Linux 5.19.14

28

LLVM
Compiler Infrastructure

Security-Sensitive System Calls (20)
Arbitrary Code Execution

execve, execveat, fork, vfork, clone, ptrace
Memory Permission Changes

mprotect, mmap, mremap, remap_file_pages
Privilege Escalation

chmod, setuid, setgid, setreuid
Networking Reconfiguration

socket, bind, connect, listen, accept,
accept4

BASTION Evaluation
Evaluation Summary

● Performance: System-call & I/O Intensive Applications
■ NGINX - Most widely deployed web server
■ SQLite - Database Engine
■ vsFTPd - FTP server

● Security: 32 Attack Study: ROP payloads, real-world CVEs, & synthesized attacks

29

Evaluation Questions

Performance
1) What is each context’s performance impact?
2) How much overall performance overhead does BASTION impose?

Security
1) How secure is BASTION?
2) How does BASTION defend against different attack strategies?
3) How does BASTION compare to other security archetypes?

BASTION Performance

30

● Argument Integrity Context is BASTION’s most expensive context to deploy

● BASTION overall performance overhead is low (<2.01%)

BASTION Performance

31

● Argument Integrity Context is BASTION’s most expensive context to deploy

● BASTION overall performance overhead is low (<2.01%)

BASTION Performance

32

● Argument Integrity Context is BASTION’s most expensive context to deploy

● BASTION overall performance overhead is low (<2.01%)

BASTION Performance

33

● Argument Integrity Context is BASTION’s most expensive context to deploy

● BASTION overall performance overhead is low (<2.01%)

BASTION Security Analysis

34

Attack Category Call Type Control Flow Argument Integrity

Return-Oriented Programming (18)
● Stack pivot gives away ROP chain

Direct System Call Manipulation (9)
● Naive attacks corrupting function pointers

Indirect System Call Manipulation (5)
● Advanced attacks mimic valid program behavior
● All attacks attempt to corrupt arguments

NEWTON CPI Attack [SIGSAC’17]

AOCR Apache Attack [NDSS’17]

AOCR NGINX Attack 2 [NDSS’17]

COOP [S&P’15]

Control Jujutsu [CCS’15]

Violated System Call Integrity Context

Conclusion
System Calls are an attacker gateway

● Coarse-grained filtering is not enough
● System call protection needs to be fine grained to be effective

System Call Integrity
● System Call Integrity hardens system calls by applying three specialized contexts
● Specialized coverage minimizes CPU interference while maximizing security around system calls

Looking Towards the Future
● BASTION can be a stepping stone to enable configurable system call protection
● BASTION can be expanded to add future contexts to protect against yet unknown system call

threats
● BASTION can be used as starting framework to protect against other system call threats

35

EXTRA SLIDES

36

BASTION System Call Statistics
● Some system calls are called more than

others (e.g., accept4 vs connect)

● System calls have sparse callsites

● System calls very rarely invoked indirectly
● Constant arguments are common

37

Other Considerations
Attacks able to bypass BASTION?

- (subset of) Data-only attacks
- In practice, will be difficult to overcome BASTION constraints

- most information can be deduced from static analysis

Deploying BASTION to real-world (2 main challenges)
- performance overhead - fine-grained defenses do constant checks to minimize deviation from correct control flow

Comparison to CFI
- Call Type + Control Flow Context are NOT equivalent to CFI
- Call Type is NOT per callsite
- Control Flow is not application wide (only covers paths that eventually lead to system calls)

Effectiveness of BASTION under arbitrary memory corruption
- info gained from static analysis significantly raises security
- attacker would need to accurately recreate a fake version of all 3 contexts
- In practice this would require MANY read/write operations to match constraints all the while STILL obeying all static

constraints deduced from BASTION analysis

38

Other Considerations 2
Selection of “Sensitive System Calls”

- Targets system calls enabling common attacker strategies aimed at escaping the scope of the victim application and
reaching the underlying system

- arbitrary code execution
- memory permission changes
- privilege escalation
- network reconfiguration

- We investigated open/write system call - this imposed significant performance overhead
- We confirmed that overhead comes from fetching process state

Other competitors - Saffire (EuroS&P’20)
- Explore fine-grained syscall filtering (of arguments)
- BASTION is more secure as Saffire is a userspace solution (works inside scope of vulnerable application) and

relies on fine-grained CFI to be in place to ensure their defense is not skipped
- BASTION is faster than Saffire since the true performance cost for them is: CFI checking + Saffire checking

Selection of benchmarks
- Did not look at compute bound benchmarks because these very rarely used security-sensitive system calls
- Further, all compute benchmarks only used syscalls for initialization of datasets and importing libraries. very very

rarely during computation phase

39

BASTION System Call Statistics 2
● Even in the case of File system system calls, there was great contrast of call

count (e.g., open (light use) vs write (heavy use) use in webserver)
● Heavy system call invocation bottlenecked BASTION at context switching

(userspace/kernelspace)
● Would be resolved if BASTION was implemented directly in kernel (module)

40

