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Abstract

In this paper, we propose CJFS, Concurrent Jour-
naling Filesystem. CJFS extends EXT4 and addresses
the fundamental limitations of the EXT4 journaling de-
sign, which are the main cause of the poor scalability of
EXT4. The heavy-weight EXT4 journal suffers from two
limitations. First, the journal commit is a strictly serial
activity. Second, the journal commit uses the original
page cache entry, not the copy of it, and subsequently
any access to the in-flight page cache entry is blocked.
To address these limitations, we propose four techniques,
namely Dual Thread Journaling, Multi-version Shadow
Paging, Opportunistic Coalescing, and Compound Flush.
With Dual Thread design, CJF'S can commit a transac-
tion before the preceding journal commit finishes. With
Multi-version Shadow Paging, CJF'S can be free from the
transaction conflict even though there can exist multiple
committing transactions. With Opportunistic Coalesc-
ing, CJF'S can mitigate the transaction lock-up overhead
in journal commit so that it can increase the coalescing
degree — i.e., the number of system calls associated with a
single transaction — of a running transaction. With Com-
pound Flush, CJF'S minimizes the number of flush calls.
CJFS improves the throughput by 81%, 68% and 125%
in filebench varmail, dbench, and OLTP-Insert on MySQL,
respectively, against EXT4 by removing the transaction
conflict and lock-up overhead.

1 Introduction

Filesystem scalability gets emphasized further as
the computer system is loaded with hundreds of CPU
cores [6,7,17,22,28,32,33,35]. A single server machine can
simultaneously run hundreds of containers [2,43,50], each
of which may frequently synchronize its local filesystem
state to the disk [13,31]. The throughput of the server
machine hinges upon the scalability of the filesystem
journaling of the host filesystem.

In this paper, we address the scalability issue of the
EXT4 journaling. EXT4 journaling uses page granularity
physical logging [47,48]. EXT4 journaling suffers from
two critical drawbacks; serial commit and committing
the original page cache entry. In EXT4, journal commit
is strictly serial activity. It can commit the following
journal transaction only after the preceding journal com-
mit finishes. As a result, in EXT4, there can be at most
one running transaction and at most one committing
transaction at a time. Moreover, EXT4 uses the original
page cache entry in committing the updated contents to
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the disk. It does not create a copy of the updates for the
journal commit. In this paper, we address both issues
and propose a new filesystem, CJF'S, by Concurrent
Journaling Filesystem.

A fair amount of works have been dedicated to ad-
dressing the scalability issue of the filesystem journal-
ing [6,8,15,17,24,44]. A few works proposed to maintain
the multiple running transactions in EXT4 so that con-
tention on the global running transaction is mitigated.
ScaleF'S [15] allocates a running transaction per each
CPU core [6,8], where each core is allocated the separate
filesystem partition. Son et al. [44] adopts a lock-free
data structure to the journal transaction. Another body
of works proposed to maintain the multiple committing
transactions. IceF'S [24] and SpanF'S [15] partition the
filesystem into multiple regions. They allocate a sepa-
rate journal area for each region. The journal commit
operations to each journal area can proceed in parallel.

Despite all the sophisticated approaches mentioned
above, these variants of EXT4 journaling still fail to
address the fundamental limitations of the EXT4 jour-
naling; serial commit and committing the original page
cache entry. In these works, the journal commit opera-
tions for the same journal region are still serialized [15,24].
Multiple running transactions and multiple committing
transactions can conflict with each other and if the con-
current transactions conflict with each other, they are
serialized.

In this paper, we address the fundamental limitations
of the EXT4 journaling mechanism; serial commit and
using the original page cache entry in the journal commit.
The contribution of CJF'S can be summarized as follows:

e Dual Thread Journaling: We separate the journal
commit operation into two separate tasks; transferring
the log blocks to the disk and making them durable.
We allocate a separate thread for each operation. With
Dual Thread Journaling, CJF'S can commit a trans-
action while the preceding journal commit is still in
progress.

e Multi-Version Shadow Paging: CJFS adopts
multi-version shadow paging to resolve the transac-
tion conflict. With multi-version shadow paging, CJF'S
uses the “copy” of the updated page cache entry in
journal commit, so the transaction is free from the
transaction conflict.

e Opportunistic Transaction Coalescing: CJFS
adopts opportunistic coalescing to mitigate the trans-
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action lock-up overhead. To increase the compound
degree of the journal transaction, CJF'S releases the
running transaction from the LOCKED state when it
finds that the running transaction conflicts with one
of the committing transactions.

e Compound Flush: CJFS creates a large number of
flush commands since it creates the multiple commit-
ting transactions in-flight, each of which issues a flush
command separately to make its journal transaction
durable. To relieve the overhead of servicing the flush
commands, CJFS compounds multiple consecutive
flushes from the concurrent transactions into a sin-
gle flush. Compound flush significantly reduces the
latency of the individual fsync() calls.

We implement the CJFS in Linux 5.18.18. CJFS
yields superior performance not only to Vanilla EXT4 but
also to the other recent works including BarrierF'S [49],
SpanF§ [15] and FastCommit [42] in varmail, dbench and
OLTP-Insert workloads.

2 Background and Motivation
2.1 Journaling in EXT4

Block granularity physical logging. A journaling
filesystem logs the updated metadata either in a block
granularity, e.g. EXT4 [36] or in a metadata granularity,
e.g. XFS [45]. Physical block granularity logging of EXT4
is not only expensive but also unable to scale.

EXT4 maintains a set of page cache entries that need
to be logged to the disk for journaling. It is called running
transaction. When the system call updates the filesystem
metadata, it first acquires a lock on the associated kernel
object (e.g., directory mutex) and obtains the journal
handle. A journal handle is a kind of ticket-like permis-
sion to add page cache entries to the running transaction.
After the application is granted with the lock and the
journal handle, the application modifies page cache en-
tries. After modifying page cache entries, it inserts the
updated page cache entries to the running transaction.

EXT4 commits the running transaction either peri-
odically or by the explicit request from the application,
e.g., fsync(). EXT4 commits the original page cache
entry of the modified data. The application that needs
to update the filesystem state is blocked if the associated
page cache entry is being committed to the disk. We
call this situation transaction conflict described in S2.2.
Block granularity logging leaves the EXT4 journaling un-
der frequent transaction conflict and subsequently under
scalability failure.

Serial journal commit. In EXT4, journal commit is
strictly serial activity. EXT4 allocates a separate thread
for journal commit, JBD thread. JBD thread can commit

the following journal transaction only after the preceding
journal transaction becomes durable.
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Figure 1: fsync() in EXT4

We illustrate the behavior of an fsync(). Let D, JL, and
JC be file dirty data pages, journal log blocks and journal
commit block. When an application thread calls fsync(),
it writes the dirty data pages (D) to the storage, and then
it wakes up the JBD thread. The JBD thread changes
the transaction state from running to committing and
writes the log blocks (L) to the storage. Once all the log
blocks are transferred (i.e., DMA-ed) to the storage, the
JBD thread writes the journal commit block (3€) to the
storage with REQ_PREFLUSH and REQ_FUA [1] flags to ensure
that the journal commit block is made durable only
after the dirty data pages and the journal log blocks do.
REQ_PREFLUSH flag instructs the storage controller to flush
the writeback cache in a storage device before servicing
the associated write command. REQ_FUA command writes
the associated data block directly to the storage media
bypassing the writeback cache of the storage. Once the
write command for commit block returns, the JBD thread
finishes committing a transaction.

Figure 1 illustrates the timing diagram of servicing two
consecutive fsync()’s. The first £sync() and the second
fsync() are issued at t; and at to, respectively. We mark
the journal transactions for the preceding fsync() and
the following fsync() as Tx; and Txg, respectively. JBD
thread starts committing Txo (at ¢3) only after it finishes
committing Tx;.

2.2 Concurrency Control in Filesystem Jour-
naling

To partly address the drawback of serial journal com-
mit, EXT4 journaling adopts compound journaling and
the shadow paging to increase its concurrency. The com-
pound journaling commits multiple file operations with a
single journal commit. The shadow paging allows the file
operation and the journal commit operation to proceed
in parallel while they share the same page cache entry.
Compound journaling inevitably accompanies transac-
tion lock-up phase when it needs to commit the running
transaction. Journal commit operation should exclusively
lock the page cache entry when it needs to write the
page cache entry to the storage. Transaction lock-up and
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page granularity exclusive locking temporarily blocks
the file operations and can severely interfere with the
overall system performance. Let us explain the details
of individual phases of journaling.
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Figure 2: Dissection of EXT4 journaling phases

(i) Coalescing in Running Transaction. In coalesc-
ing phase, the application can modify the metadata and
insert the associated page cache entry to the running
transaction. EXT4 journaling adopts compound trans-
action which is also known as a group commit [12] to
increase the throughput. In Figure 2, a file operation
modifying page cache entries P; and Po and another file
operation modifying page cache entries P2 and P3, shar-
ing the commonly modified page cache entry Po. EXT4
creates a compound transaction of P, P2, and P3.

(ii) Transaction Lock-Up in Running Transaction.
When the JBD thread needs to commit the running trans-
action, the JBD thread stops issuing the journal handle
to prohibit the new file operation to modify the running
transaction. Then, it waits for the outstanding file op-
erations which already have a journal handle to finish.
Otherwise, starting the journal commit can be postponed
indefinitely. When all file operations which already have
a journal handle finish, JBD thread changes the trans-
action state from running to committing. We call this
time period during which the JBD thread stops issuing
the journal handle as transaction lock-up phase. Any file
operations that update the metadata are blocked when
the running transaction is in lock-up phase. In Figure 2,
during the transaction lock-up phase, the file operation
that modifies P4 is blocked. The file operation wakes up
when the lock-up phase of Tx; is released and adds P4 to
the new running transaction, Txs.

(iii) Shadow Paging in Committing Transaction.
After the transaction state is changed to committing,
JBD thread prepares the page cache entries for DMA
transfer. EXT4 journaling adopts very limited form of
Shadow Paging to handle the transaction conflict during
this time interval. It allows only one shadow page and
does not allow more multiples versions. When there
occurs transaction conflict when the JBD thread prepares
the page cache entries for DMA transfer, JBD thread

creates the shadow copy of the conflict page and uses a
shadow copy of the original page cache entry for DMA
transfer [47]. With shadow paging, a file operation can
modify the original page cache entry in the committing
transaction without waiting for the completion of the
transaction commit. EXT4 journaling can create up
to only one shadow page. If two or more transactions
attempt to update the same page, only one can proceed
and the others are blocked until the associated page is
committed to the storage. In Figure 2, during the shadow
paging phase, the file operation tries to modify P3, which
is in the committing transaction, Tx;. The file operation
creates the shadow page, P’ 3, and adds the original page
cache entry, P3 to the new running transaction, Txs.

(iv) DMA in Committing Transaction. When the
log block of the committing transaction is transferred
to the storage (DMA), the host establishes an exclu-
sive lock on the associated page cache entry. This is to
prohibit the file operation from blindly updating the
page cache entry of the committing transaction that is
being transferred and from migrating it to the running
transaction compromising the atomicity of the journal
commit. During DMA phase, any file operations that up-
date the locked page cache entry are blocked. In Figure 2,
the DMA phase is marked in gray. While a compound
transaction of P1, Py, and P’3 is under DMA, an attempt
to modify page Py will be blocked. Because P’3 is the
shadow page and the shadow page is being transferred,
the file operation which modifies P3 is not blocked and
modifies the original page cache entry, P3. An attempt
to modify a page cache entry, P5, which is not in a com-
mitting transaction will successfully add the page to the
new running transaction, Txs.

2.3 Existing Solutions to Scale Journaling

A number of approaches have been proposed to
increase the concurrency in the filesystem journal-
ing [15,17,24,32,45,49]. They can be categorized with
respect to the number of threads that are used to handle
a single journal commit; (i) single-threaded journal com-
mit and (ii) multi-threaded commit. They also can be
categorized with respect to how they allocate the journal
transaction in the filesystem; per-core basis or per-region
basis. Table 1 summarizes the approaches in the existing
scalable filesystem journaling techniques.

Filesystems ‘ Concurrent Transactions ‘ Multi-Threaded

‘ Per-core ‘ Per-region ‘ Commit
Z-journal [17] O O
SpanF§S [15] O
IceFS [24] O
MQFS [23] 0O
BarrierFS [49] A
XFS [45] O
iJournaling [32] O
ScaleFS [6] O

Table 1: Categories of existing scalable filesystems
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In the concurrent transaction approach, the journal-
ing filesystem allows multiple running transactions, mul-
tiple committing transactions or both, to proceed in
parallel. In per-core basis approach, they allocate the
transaction for each CPU core (per-core basis) [32] . In
per-region basis approach, filesystem is partitioned into
multiple regions and allocates dedicated journal area
for each filesystem region [15,17,24]. In per-region ba-
sis approach, the journaling filesystem maintains the
running transaction and/or committing transaction in
per-region basis. The filesystem can commit the multiple
transactions concurrently for each filesystem region. Per-
region approach requires changing the on-disk layout of
the existing filesystem partition [15,17,32]. In per-core
approach, the transactions may conflict with each other,
i.e. they modify the same page cache entry. Resolving
the transaction conflict accompanies substantial over-
head, e.g. [17] compromises fsync() durability or journal
commit is subject to excessive tail latency [15].

In multi-threaded journal commit approach, the filesys-
tem divides a journal commit operation into multiple
phases and allocates the separate threads for handling
each of the journal commit phases. With this multi-
threaded organization, a thread can start processing the
following journal transaction before the preceding jour-
nal commit finishes in pipelined manner. In XFS, one
thread is responsible for making the journal transaction
durable and the other thread is responsible for ensur-
ing that all preceding transactions are durable after the
journal transaction becomes durable [16]. In BarrierF'S,
one thread is responsible for issuing the 10 requests for
journal commit, and the other thread is responsible for
making the journal transaction durable [49]. Both XFS
and BarrierF'S can start a new journal commit without
waiting for the preceding journal commit to finish. In
BarrierF'S, the journal commit operation is serialized in
most cases due to frequent transaction conflict.

To ensure the storage order between the log blocks
and the journal commit block in committing a journal
transaction, the filesystem interleaves the write requests
for the log blocks and the write request for commit
block with the FLUSH command. Recently, a number of
works have been proposed order-preserving 10O stack to
mitigate the FLUSH overhead associated with ensuring
the storage order in journal commit operation [9, 21,
23,49]. The order-preserving IO stack consists of order-
preserving block layer [23,49] and order-preserving FTL
[9,21,49]. Order-preserving FTL can be implemented via
exploiting the cache-barrier command [49], via imposing
a global sequence number on the IO commands [9] or
via exploiting non-volatile cache at SSD [21]. These
works show that order-preserving F'TL can be realized
without substantial overhead and renders the identical
performance as legacy FTL.

3 Scalability of EXT4 Journaling
3.1 Workloads

We used four filesystem macro benchmarks — two vari-
ants of varmail (varmail-shared and varmail-split)
in filebench [26], dbench [46], and OLTP-Insert [19] —
to cover wide variety of real-world application behaviors.
Each benchmark has a different mix of file operations
(Table 2) and stresses various parts of the filesystem
(Table 3).

Benchmarks | create() | unlink() | write() | read() | fsync() | rename()
varmail 7.7% 7.7% 15.4% 15.4% 15.4% 0%
dbench 16.6% 3.5% 8.6% 27.1% 5.2% 0.7%

OLTP-Insert 0% 0% 77.8% 12.2% 10.0% 0%

Table 2: Ratio of filesystem operations in benchmarks

Directory | In-memory | On-disk
Benchmarks . . .
contention logging logging
varmail-shared High Moderate High
varmail-split No Moderate High
dbench No Moderate | Moderate
OLTP-Insert No low low

Table 3: Filesystem contention in benchmarks

Mail server: varmail [26]. The varmail bench-
mark simulates the behavior of mail server. In the var-
mail workload, each thread repeats a set of create(),
unlink(), and fsync() operations. Varmail is known for
intensive fsync() calls. In the original varmail work-
load, all threads share the same directory yielding the
lock contention on the shared directory. We call it
varmail-shared. We modify the varmail workload so
that each thread works on its own directory. We call
it varmail-split. We use varmail-split how the filesys-
tem journaling scales in the absence of the contention
on the shared directory.

File server: dbench [46]. The dbench simulates the
behavior of the fileserver. It is metadata-intensive work-
load calling unlink() and rename() followed by fsync(Q)
(with a -sync-dir option enabled). In dbench, fsync(Q
calls account for 5.2% of all filesystem calls. Dbench
calls read() and write() with various IO sizes; 4KB 10
accounts for 60% of the read() and write().

OLTP: OLTP-Insert on MySQL [19] OLTP-Insert
simulates the server for online transaction processing. In
this workload, write() followed by fsync() is frequently
invoked. The write size ranges from 8KB to 32KB; 8KB
write accounts for 81%. Among the four workloads, the
contention (or transaction conflict) degree of this work-
load is the lowest. We use this workload to test the be-
havior of journaling under the circumstances that there
is only little contention (or transaction conflict).

3.2 Scalability Results

We compare the performance of the four benchmarks
under EXT4 and BarrierFS [49]. BarrierF'S is the variant
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Figure 3: Scalability of EXT4 and BarrierF'S

of EXT4 which can commit multiple transactions con-
currently. We used two SSDs — Samsung 860 Pro (MLC
Flash, SATA interface) and 970 Pro (MLC Flash, NVMe
interface) in this experiment. However, we omitted the
results with 860 Pro since the performance trends on
these two SSDs are almost identical. Please refer to S6.1
for the details of our evaluation setup.

As Figure 3 shows, the performance and scalability of
both filesystems get worse as fsync() accounts for more
dominant fraction of the entire system calls. The dbench
which renders the least significant fsync() calls is the
most performant and scalable.

As shown in Figure 3(b), BarrierF'S increases the per-
formance of dbench, OLTP-Insert and varmail-split by
28%, 61% and 21% against EXT4 in forty threads, re-
spectively, thanks to its concurrent journaling scheme.
However, the performance of varmail-shared is not at
all scalable and moreover is even worse than EXT4. We
found that the main problem is the transaction con-
flict. As presented in Table 3, varmail-shared has con-
tention on a shared directory. When the modified shared
directory pages are under DMA, the other concurrent
transaction cannot make progress, significantly limiting
scalability until the IO completes.

3.3 Analysis on Scalability Bottleneck

We examine the scalability bottlenecks in filesystem
journaling with EXT4 performing serial journal com-
mit and BarrierFS performing concurrent journaling.
We identify four main components that affect the per-
formance scalability in EXT4 and BarrierF'S; trans-
action conflict (S3.3.1), serial flush (S3.3.1), length
of a transaction lock-up interval (S3.3.2) and coalesc-
ing degree of compound journaling (S3.3.3). We present
varmail-shared results only since the other workloads
show the similar performance behavior.

3.3.1 Transaction Conflict

EXT4. Figure 4 shows the number of transaction con-
flicts (varmail-shared). The number of transaction con-
flicts — the number of file operations trying to modify
the log blocks that are under DMA. At varmail-shared,
the number of blocked file operations ranges from 6,360

£ 20 EXT4 C— BarrierFS mmmm
§ 15 | d d
3 1or
R
10 20 30 40
# of threads

Figure 4: The average number of conflicts in a transaction
(EXT4 and BarrierF'S, varmail-shared workload)

to 15,809. It accounts for 4.7% of all file operations. De-
spite the shadow paging feature of EXT4 to resolve the
transaction conflict, EXT4 journaling still suffers from a
significant amount of transaction conflicts.

BarrierFS. BarrierF'S renders significantly worse per-
formance than EXT4 in varmail-shared workload (Fig-
ure 3(a) vs. Figure 3(b)). We found that the concurrent
journaling design of BarrierF'S increases the number of
transaction conflicts substantially and it causes the scal-
ability meltdown. BarrierF'S can start committing the
following transaction before the preceding transaction
commit finishes. Technically, there can be multiple com-
mitting transactions in-flight in BarrierF'S. In reality,
BarrierF'S fails to commit multiple transactions concur-
rently. There are two reasons; transaction conflict and
serial flush. We find that most journal transactions share
some pages in common, e.g., inode block and bitmap, and
is subject to the transaction conflict [17]. The following
journal transaction cannot be committed till the preced-
ing transactions which it conflicts with are made durable
at the storage. In BarrierF'S, the flush thread issues the
flush command of the following committing transaction
only after the preceding transaction becomes durable.
Even though BarrierFS commits multiple transactions
concurrently, it flushes each of them with a separate flush
command. Since each journal commit yields a separate
flush at the storage device, the benefit of concurrent
journaling design of BarrierF'S is marginal.

Moreover, when running transactions are trying to
modify log blocks under flush, they all are conflicted and
blocked. Shadow paging (inherited from EXT4) does not
help because it can create only one version in a certain
condition. As a result, higher concurrency in committing
transactions and limited shadow paging causes nearly
100% of file operations suffering from transaction con-
flicts in all threads.

3.3.2 Transaction Lock-up

One of the main causes of scalability failure in concur-
rent journaling is the extended lock-up interval.

EXT4. In EXT4, the length of transaction lock-up
interval is negligible as in Figure 5(a). In EXT4, the
lock-up period is just a duration waiting for outstanding
file operations to finish, which is very short in general.
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Latency(ms)

Also, as Figure 6(a) shows, fsync(Q) latency is high but
the latency of create() and unlink() is still low. In other
words, the short lock-up period does not interfere other
file operations, create() and unlink().

BarrierF'S. In BarrierF'S, the transaction lock-up la-
tency accounts for approximately half of the entire
transaction commit latency (Figure 5(b)). We found
that transaction conflict and concurrent journaling nega-
tively interfere with each other and significantly extend
the transaction lock-up period. Because the running
transaction waits for resolving of transaction conflict in
LOCKED state.

In both EXT4 and BarrierF'S, JBD thread first places
a running transaction in the LOCKED state when it
starts committing the running transaction. There is a
critical difference between EXT4 and BarrierFS from
the aspect of the LOCKED state. In EXT4, when JBD
thread places the running transaction in the LOCKED
state, the running transaction is guaranteed to be free
from transaction conflict. That is because, in EXT4,
journal commit is strictly serial activity. In EXT4, the
running transaction can be released from the LOCKED
state if all outstanding filesystem operations finish.

In BarrierF'S, the running transaction can be placed in
the LOCKED state while the preceding journal commit
is still in flight. BarrierF'S can prematurely place the
running transaction at the LOCKED state before the
running transaction becomes free from the transaction
conflict. BarrierF'S waits to release the running trans-
action from the LOCKED state till all outstanding file
operations finish and till all conflicts are resolved. As
a result, a running transaction stays at the LOCKED
state in much longer interval in BarrierF'S than in EXT4.
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Figure 5: Transaction lock-up interval in varmail-shared
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Figure 6: Latency of unlink(), create() and fsync() in
varmail-shared
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Figure 7: Excessive Lock-Up overhead in Concurrent
Journaling (BarrierF'S)

Figure 7 illustrates this situation. The running transac-
tion, Txo, is created at t1. The application calls fsync()
at to. Txo is placed on the LOCKED state immediately
without waiting for the current committing transaction
Tx; is made durable. If Txo conflicts with Tx; (in most
cases it does), Txy can be released from the LOCKED
state only after Tx; is committed to the storage.

3.3.3 Limited Coalescing Degree

The key ingredient that governs the performance scala-
bility of the filesystem journaling is the coalescing degree
of the journal transaction — the number of filesystem
operations in a journal transaction.

EXT4. EXT4 scales well in varmail-shared work-
load (Figure 3). Ironically, the strict serial nature of
EXT4 journaling actually helps itself to increase the
coalescing degree of the compound journaling. EXT4
can start committing the running transaction only when
the preceding journal commit finishes. When the jour-
nal commit is in progress, all updates associated with
the incoming file operations are inserted at the running
transaction. Therefore, there is a higher coalescing op-
portunity as the number of threads increases. Figure 8(a)
confirms that the number of handles (i.e., file operations)
in a transaction increases linearly with the number of
threads. At the same time, we observe that the journal
commit latency increases with the number of threads.
This is because journal transaction tends to get larger
as the number of threads increases. As shown in Fig-
ure 8(c), median and 99.99% latencies increase 11% and
7%, respectively, from 10 to 40 threads.

BarrierFS. BarrierFS fails to scale in varmail-shared
workload (Figure 3) due to its limited coalescing degree.
This is because BarrierFS places the running transac-
tion into LOCKED state prematurely and leaves less
chance to coalesce the multiple file operations into a
single journal transaction. Figure 8(b) confirms that in
BarrierF'S the coalescing degree remains the same while
the number of threads increases. Since the coalescing
degree does not increase, the latency of journal com-
mit remains the same irrespective of the increase in the
number of threads (Figure 8(d)).
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4 Design

In this section, we present the design of CJFS, a Con-
current Journaling Filesystem. CJFS consists of four key
technical ingredients; (1) dual thread journaling (S4.1),
(2) multi-version shadow paging (S4.2), (3) opportunistic
coalescing (S4.3), and (4) compound flush (S4.4) — to
overcome all the bottlenecks discussed in S3.3 and to
scale filesystem journaling.

4.1 Dual Thread Journaling

For concurrent journaling, we separate the journal com-
mit procedure into two phases, the commit phase and
the flush phase and allocate separate threads, namely
commit thread and the flush thread, for each phase. The
commit thread is responsible for issuing the write re-
quests for journal transaction to the storage. Once this
completes, the storage device sends an interrupt to the
host notifying about the completion of servicing the re-
quests. The flush thread is responsible for making the log
blocks and the commit block durable. Once the interrupt
arrives, the flush thread wakes up and issues the flush
command to the storage to make the log blocks and the
commit block durable. Via separating the commit thread
and the flush thread, CJFS can commit the following
transaction without waiting for the preceding journal
commit to finish.

Figure 9 illustrates the mechanism of Dual Thread
Journaling. CJFS maintains a single running transaction.
In fsync(), the flush thread waits till all dirty pages, log
blocks, and the commit block are transferred to the disk.
Once this completes, it issues the flush command to
the storage. Our journaling module leverages the cache
barrier command [14,36,49], which efficiently preserves
the partial order between the issue order and the persist
order in a commodity storage device.

Storage by Tx; ---[ID {[WEIEE! <Flush
S T —— 8 @@

ty Time

[1: DMA

t, ty ty
[—J: Running Tx I : Committing Tx
Figure 9: Concurrent Transaction Commit in Dual
Thread Journaling. CJFS performs Tx;’s flush phase
and Txe commit phase concurrently

4.2 Multi-Version Shadow Paging

Most filesystems cluster the filesystem metadata to-
gether in their filesystem partition. This is to exploit the
spatial locality of the disk access. The filesystem oper-
ations, e.g.,create() or write(), access a few common
blocks which contain the popular filesystem metadata,
e.g., the allocation bitmap or inode.

EXT4 adopts the page granularity physical logging
and uses the original page cache entry. When it commits
the journal transaction, it establishes an exclusive lock
on the page cache entry associated with the journal
transaction till the journal transaction becomes durable.
Transaction conflict is particularly harmful to concurrent
journaling since it serializes the journal commits. If the
transaction conflict happens frequently, the concurrent
journaling of CJF'S becomes barely effective and resorts
to serial journal commit as in EXT4.

To address the transaction conflict, we propose
Multi- Version Shadow Paging (MVSP). In multi-version
shadow paging, when the commit thread starts the jour-
nal commit, it creates the shadow copy of all pages in
the journal transaction. In committing the journal trans-
action, the commit thread uses the shadow copy of each
page in the transaction for transferring the journal trans-
action to the storage device instead of using the original
one. Since the journaling module uses the shadow page
for the journal commit, the subsequent file operation can
update the original page.

There can be multiple shadow copies for a given page
cache entry. Assume that the shadow copy of page P is
being committed to the storage. An application updates
the P to P’ and calls fsync(). Then, the commit thread
creates the shadow copy of P’ and commits the shadow
copy of P’ to the storage. While the shadow copy of P’ is
being transferred by the journal commit, another appli-
cation may update the P’ to P and calls fsync(). Then,
there exist two shadow copies for P, P’ and P”. CJFS
defines the maximum number of shadow pages that can
be associated with a single page. The maximum number
of versions is an administrator-configurable parameter
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and initialized when CJFS is mounted.

Figure 10 illustrates the behavior of CJFS when the
transaction conflict exists. Txq, Txo and Txg are created
in order. Each of them is in a different phase. There
are one running transaction, Txs, and two committing
transactions, Txs and Tx;. Tx; has three pages Py, P
and P3. When the commit thread commits Tx;, CJFS
creates the shadow copies P}, P, and P4 for the pages
in Txy. The subsequent filesystem operation updates Py,
P2 and P4. Then, the filesystem triggers another journal
commit. The following transaction, Txs, consists of Py,
P2 and P4. In committing Txs, the commit thread creates
the shadow copies P{ (second shadow copy of Py), P§
(second shadow copy of P2) and P} for each page in Txs.
Two transactions, Tx; and Txg are being committed to
the storage. Subsequent file operations update Py, P2 and
P3. Since these pages are available for the update, the
file operations update these pages and insert them to
the running transaction.

Multi-version shadow paging in CJF'S is a variant of
versioning which is widely used in transaction concur-
rency control [18,30,51]. Multi-version shadow paging of
CJF'S is different from the versioning in Copy-On-Write
filesystems [20,37-40]. These filesystems retain the his-
tory of updates for individual file blocks to make the 10
workload sequential and/or to construct the filesystem
snapshot easily.

4.3 Opportunistic Coalescing

CJF'S pre-allocates a fixed number of pages for shadow
paging. Since the number of shadow pages is limited,
the transaction conflict can still occur if all pre-allocated
shadow pages are used to hold the logs. If the transaction
conflict occurs, the running transaction is put in the
LOCKED state and all subsequent file operations that
modify the filesystem state are blocked. To resolve this
problem, we propose the Opportunistic Coalescing. The
proposed opportunistic coalescing shares the same idea
with try_lock [4].

Algorithm 1 shows the pseudo-code for opportunistic
coalescing. At first, the commit thread puts the running
transaction at the LOCKED state (Line 4), After the

Algorithm 1: Opportunistic Coalescing

1 function journal_commit_transaction(journal)
2 while true do
3 tx = journal—running_ tx;
4 tx — state = LOCKED;
5 if outstanding system calls > 0 then
6 ‘ wait (outstanding system calls == 0);
7 end
8 if transaction conflict then
9 tx — state = RUNNING;
10 wakeup (user thread waiting on LOCKED);
11 wait(preceding transaction to commit);
12 continue;
13 end
14 break;
15 end
16 journal — committing_tx = tx;
17 journal — running_tx = NULL;
18 submit_bio_tx(tx);
19 insert_committing_tx_list({x);
20 end
Running : Commitling [l : Dispatch of log blocks

and the commit block

fsyno() , : 1 .
1 Locked ! [: Transfer of log blocks

™I 1 I Fush > and the commit block

e Running

Committing
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Figure 11: Hlustration of Opportunistic Coalescing

ts Time

running transaction is put at the LOCKED state, the
commit thread waits for the outstanding file operation
which already has a journal handle to finish (Line 6).
When all outstanding file operations finish, the commit
thread checks if there exists any conflict (Line 8). If there
exists a conflict, the commit thread places the transaction
back to the RUNNING state and is blocked (Line 9-11).
The running transaction can continue accommodating
the newly incoming log blocks while the commit thread is
blocked. Each time when the transaction commit finishes,
the flush thread wakes up the commit thread. When
the commit thread wakes up, it checks if the running
transaction is free from the conflicts. If it is free from
the conflicts, it changes the state of the transaction to
LOCKED state again (Line 12).

Figure 11 illustrates how the opportunistic coalescing
works. There arrive two consecutive transactions (Tx;
and Txz). In Figure 11, Txy is put into LOCKED state
twice; at t2 and at t4. Txg is in RUNNING state during the
period between two LOCKED states. After the state of the
running transaction becomes RUNNING state, all pending
file operations, which were blocked waiting for the journal
handle, are issued the journal handles. With Opportunis-
tic Coalescing, CJF'S can coalesce larger number of file
operations into the running transaction.
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4.4 Compound Flush

CJF'S splits the journal commit operation into two
phases; (i) transferring the log blocks and the commit
block (commit thread) and (ii) making them durable
(flush thread). For journaling of CJF'S to work in a fully
concurrent fashion, both the commit thread and the flush
thread should be able to handle the associated tasks in a
concurrent manner. In CJFS, the commit thread handles
the transaction concurrently; it can commit the following
transaction while the preceding transaction is in-flight.
However the flush thread handles the transaction in serial
fashion; it can flush the following transaction only after
the preceding transaction is flushed.

To ensure that the journal transactions are made
durable in order, the flush thread issues the flush com-
mand for the following transaction only after the flush
command for the preceding transaction returns. As a
result, the behavior of the flush thread is serial, which
makes the concurrent journal mechanism of CJFS only
partially complete. Figure 12(a) illustrates the concur-
rent journaling with serial flush. Commit thread can
start committing the following transaction Txy before
the preceding transaction Tx; commit finishes. However,
the flush thread can flush the following transaction Txs
only after the transaction Tx; is flushed to the storage.

[II: Dispatch of log blocks

I Running 1 Committing I
; i g and the commit block
™ IIII\ l: [: Transfer of log blocks
| Running Committing and the commit block
' e 1 ]
L] E— ] —Te ST ——

Time
(a) without compound flush
[l : Dispatch of log blocks
and the commit block

[: Transfer of log blocks
and the commit block
Committing E

! Running | Committing 1

)

LS — ] —
| Running

S — 1] s S T I——

Time
(b) with compound flush

Figure 12: Comparison of the flush procedure with and
without Compound Flush

To address the serial flush issue of CJFS, we pro-
pose Compound Flush. Compound Flush exploits the
cache barrier command [14,36]. Compound Flush works
as follows. When the flush thread is about to send the
flush command, it checks if there exist any following
committing transactions. If following committing trans-
action does not exist, it sends the flush command. If
the following committing transaction exists, it sends
the cache barrier command instead. Compound Flush
delegates the task of persisting the transaction to the fol-
lowing transaction commit request. An fsync() returns

only when the associated journal transaction becomes
durable. To prevent the Compound Flush from delaying
the transaction commit indefinitely, we limit the number
of transactions that can be flushed with a single flush
command. When the number of transactions waiting
for the flush reaches its limit or when there is no more
committing transactions in-flight, the flush thread sends
a flush command to the storage. With cache barrier
commands, the storage controller ensures that the log
blocks of the individual transactions are made durable
in order. When the flush command returns, the flush
thread wakes up all application threads that are waiting
for their fsync() to return.

Figure 12(b) illustrates how Compound Flush works.
When the flush thread finishes transferring the transac-
tion Txj, the flush thread starts transferring the transac-
tion Txo instead of calling flush for flushing the transac-
tion Tx;. When the flush thread finishes transferring the
transaction Txs, it finds that there are no other commit-
ting transactions in flight. Then, it calls flush to make
the transaction Tx; and transaction Txs durable.

5 Discussion

We compare CJF'S with the closest filesystem of this
sort, BarrierF'S [49]. Dual Thread Journaling of CJFS
and Dual Mode Journaling of BarrierF'S are similar in
that both allocate separate threads for transaction com-
mit and transaction flush, respectively. However, Barri-
erF'S’s dual thread design is to efficiently support the two
journaling modes; “ordered” mode and the “durability”
mode. It is not designed for concurrent journaling.

There are three key differences between CJFS and
BarrierFS. First is how to handle the transaction conflict.
BarrierF'S cannot commit the running transaction if the
running transaction conflicts with any of the ongoing
committing transactions. CJF'S can commit the running
transaction even if there is a conflict. CJF'S uses multi-
version shadow paging to resolve the conflict between the
running transaction and the committing transactions.
The second is how to handle the transaction lock-up. In
BarrierF'S, transaction lock-up is non-preemptive. Once
the running transaction is locked-up, it waits for all com-
mitting transactions that it conflicts with to finish. In
CJFS, transaction lock-up is preemptive. When a run-
ning transaction is locked-up, CJF'S checks if the running
transaction conflicts with any of committing transactions.
If it finds a conflict, the running transaction is unlocked.
The third is how to flush the committing transactions.
For a set of committing transactions that proceed concur-
rently, BarrierF'S flushes each of them separately. CJFS
flushes a number of concurrent transactions together,
reducing the flush overhead substantially.

The Opportunistic Coalescing and Compound Flush
can be used in the other journaling filesystems such as
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XFS [45]. In journal commit, XFS copies the logs in
the log list to the log buffer and then flushes the log
buffer to the log area in storage. With Opportunistic
Coalescing, XFS can insert more logs to the log list by
releasing the lock on the log list. With Compound Flush,
XF'S can flush the multiple log buffers with a single flush
command. Dual-Thread Journaling and Multi-Version
Shadow Paging are already used widely in other filesys-
tems [20,37,38,45,49] or DBMS [18,29, 30].

6 Evaluation
6.1 Experiment Setup

We implemented CJF'S [49] on Linux Kernel 5.18.18.
We used a 40-core server (two Intel Xeon Gold 6230
processors and 512 GB DRAM) and Samsung 970 Pro
SSD (MLC Flash, NVMe) for our experiment. We as-
sume that the SSD supports cache barrier command as
a mobile flash products (eMMC) support cache barrier
command [3,5]. They do not render any significant perfor-
mance deficiency against the ones without cache barrier
support. Also, previous studies [9,49] showed the FTL
overhead of supporting the cache barrier command is
less than 2%. Given all these, we carefully believe that it
is reasonable to assume that SSD can support cache bar-
rier command without significant performance overhead.
We compare CJFS against BarrierF'S [49], SpanF'S [15],
Vanilla EXT4, and EXT4 with Fast-Commit [42]. We
used three macro benchmarks; varmail for mail server,
dbench for file server, and OLTP-Insert on MySQL. Please
refer to S3.1 for details of the benchmarks. We set the
maximum number of versions in CJFS to five'.

6.2 Effect of Individual Techniques

Dual Thread Journaling. We examine the com-
mand queue depth of the JBD thread (Figure 13) at
varmail-shared. In result, CJF'S shows higher command
queue depth than EXT4 and BarrierF'S. Because of the
serial transaction commit in EXT4, the maximum queue
depth of EXT4 is one. Although BarrierF'S adopts dual
thread design, its maximum queue depth is two due to the
transaction conflict. CJF'S fully exploits the queue depth
of the storage with Dual Thread design. While BarrierFS
suffers from the transaction conflict, CJFS resolves the
transaction conflict with Multi-Version Shadow Paging.
The performance effect of the Multi-Version Shadow Pag-
ing is described separately. With the higher queue depth,
it renders higher SSD IO utilization.

Multi-Version Shadow Paging. We vary the max-
imum number of versions in MVSP and examine the
throughput, the latency, and the number of conflicts per
transaction. We examine the effectiveness of MVSP un-

1We found that we do not need more than five shadow pages
to eliminate transaction conflict in our experiment setup.
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Figure 13: Queue depth of JBD thread in CJFS, Barri-
erFS (BarFS), and EXT4

der three different maximum numbers of versions; one
(EXT4 and BarrierFS), three (noted as CJFS-V3), and
five (noted as CJFS-V5). Note that EXT4 and Barri-
erF'S can have up to one shadow page. In the absence
of any versioning feature, BarrierF'S is subject to fre-
quent transaction conflicts. Transaction conflict becomes
more harmful when the filesystem allows the concurrent
journal commit (BarrierF'S) since it extends the trans-
action lock-up interval. As a result, BarrierF'S renders
worse performance than EXT4. With forty threads, the
performance of BarrierFS is 60% of EXT4.

Multi-version shadow paging brings additional memory
pressure and the overhead of preparing the shadow page.
The total memory pressure for multi-version shadow
paging corresponds to the sum of the shadow pages
associated with the concurrent transactions. The aver-
age transaction size is 33 blocks in varmail-shared (40
threads). CJFS with five versions (CJFS-V5) consumes
660KByte (5*33*4KByte) additional memory. Accord-
ing to our physical measurement, preparing the shadow
page takes approximately 80 usec for a transaction in
varmail-shared (40 threads). The average transaction
commit latency decreases from 4.4 msec in EXT4 to
2.2 msec in CJFS in varmail-shared (40 threads). In
CJFS, the reduction in the journal commit latency far
outweighs the overhead of shadow paging.

We examine the fsync() latency of four filesystems
(Figure 14(b)). CJFS and BarrierFS yield the short-
est latency. The average latency of EXT4, BarrierFS
CJFS (V3), and CJFS (V5) are 8.1ms, 4.6ms 6.1ms,
and 4.7ms, respectively. CJFS yields the shortest tail
latency (99.9%) among the four filesytstems. The tail la-
tency of EXT4, BarrierFS, CJFS (V3), and CJFS (V5)
are 17.0ms, 13.5ms, 16.3ms and 11.8ms, respectively. Bar-
rierF'S and CJFS-V5 has similar latency but CJFS-V5
has a better throughput than BarrierF'S because of the
transaction conflict. In BarrierFS, file operations are
blocked when the transaction conflict occurs. However,
CJFS-V5 is free from the transaction conflict. File oper-
ations return without waiting for the transaction conflict.

We examine the number of conflicting blocks. The
average number of conflicted blocks in a transaction is
eleven or larger in EXT4 and BarrierF'S but less than
two in CJFS (Figure 15). The number of conflicts per
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transaction is inversely proportional to the benchmark
performance. CJFS with five versions (CJFS-V5) out-
performs EXT4 1.7x at 40 threads.
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Figure 15: Average number of conflicts per transaction

Opportunistic Coalescing. Opportunistic Coalesc-
ing improves the filesystem performance by 2.5x (Fig-
ure 16(a)). With Opportunistic Coalescing, the coalesc-
ing degree of the journal transaction increases by 3.3x
(Figure 17).
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(a) Opportunistic Coalescing (b) Compound Flush

Figure 16: Effect of Opportunistic Coalescing and Com-
pound Flush for varmail-shared in CJFS

Compound Flush. We ran varmail-shared to see the
performance impact of Compound Flush. We set the
maximum version number to five. Figure 16(b) shows
that Compound Flush improves throughput up to 2.14x.
By merging the multiple flush commands into one, Com-
pound Flush reduces the average fsync() latency from
11.8ms to 4.7ms.

6.3 Macro Benchmarks

Mail server: varmail-shared and varmail-split. Fig-
ure 18(a) and Figure 18(b) shows the throughput of
varmail-shared and varmails-split, respectively. Since
all threads share the same directory in varmail-shared,
the transaction conflicts occur much more frequently.
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Figure 17: Comparison of coalescing degree with and
without Opportunistic Coalescing for varmail-shared

For varmail-shared, CJFS outperforms EXT4 and Bar-
rierF'S by 62% and 173%, respectively. For varmail-split,
the throughput of CJFS is 82% and 15% higher than
that of EXT4 and BarrierFS, respectively. CJF'S mani-
fest itself in varmail-shared because MVSP of effectively
handles the transaction conflict. In varmail-shared, Bar-
rierF'S becomes subject to the severe performance degra-
dation due to frequent transaction conflicts.

File Server: dbench. As Figure 18(c) shows, CJFS
increases throughput 68% over EXT4. Dbench does not
have the directory contention (similar to varmail-split)
and it is less fsync()-heavy than varmail-shared, incur-
ring less transaction conflicts. Hence BarrierFS scales
better in dbench than in varmail workload.

OLTP-Insert on MySQL : Here, the transaction conflict
rarely occurs. CJF'S scales well even when there is little
or no transaction conflict. As Figure 18(d) shows, CJFS
increases throughput up to 2.25x over EXT4 in ten
threads. Moreover, CJFS increases the throughput by
15% compared to BarrierFS in ten threads.

Analysis : Fast commit [42] uses metadata-granularity
physical logging. Despite its data structural elegance,
Fast commit yields second to lowest throughput among
the five. Fast commit trades the fsync() throughput
with the fsync() latency. Due to its finer transaction
granularity, Fast commit tends to make the smaller jour-
nal transaction. As a result, the fsync() latency becomes
shorter in Fast commit. However, we observe that the
number of flushes, i.e., the number of journal commits,
increases significantly when EXT4 employs Fast commit.
As a result, in terms of journaling throughput and scala-
bility, Fast commit in EXT4 leaves substantial room for
improvement. Fast commit is particularly detrimental to
the journaling performance when there are a large num-
ber of threads. SpanF§ [15] yields the worst performance
among the five due to its serial journal commit. SpanFS
defines the running transaction for each filesystem region.
In SpanF'S, these transactions can be committed in paral-
lel. However, when the two or more transactions modify
the shared filesystem metadata, e.g. root directory, the
following running transaction can only be committed
after the preceding running transaction is made durable.
When there exists multiple concurrent running transac-
tions (SpanFS), the performance becomes actually worse
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than when there allows only one running transaction
(EXT4). This is because SpanF§ creates large number of
small running transactions and all small running trans-
actions are committed in serial fashion. On the other
hand, EXT4 commits a large amount of the filesystem
updates with a single running transaction.

6.4 Crash Consistency

CJFS uses the same on-disk structure and the recovery
routine with EXT4. We use CrashMonkey [25] to examine
if CJFS recovers the filesystem properly under unex-
pected system crashes. Crashmonkey generates a number
of crash scenarios and checks if the filesystem recovers
correctly. We use two scenarios, rename_root_to_sub and
create_delete. CJF'S passed all 10,000 test cases. We
also generate sudden-power-off condition and examine
if CJF'S recovers the filesystem state into a consistent
one. We confirmed that the recovery routine of CJFS
correctly replays the transactions in the journal region
and places the filesystem state into the consistent state.

7 Related Work

Multiple journal regions. IceFS [24] creates multi-
ple journal regions in a filesystem partition for better
isolation. ScaleF'S [6], SpanF'S [15], and Z-journal [17]
manage multiple (or per-core) journal regions to reduce
contention on journaling and to achieve high scalability.
However, they still serially commit a journal transaction
for each journal region and they are subject to trans-
action conflict when multiple threads access the same
storage region. Note that Z-journal compromises the
durability of fsync() for scalability.

Per-core running transaction. ScaleFS [6] and
MQFS [23] maintain per-core running transaction to
avoid contention in concurrent journaling. While these
works can concurrently commit the multiple transactions
in different cores, they commit the transactions in serial
fashion in each core. In addition, while this approach
minimizes the contention on journaling, it also loses the
chance of transaction coalescing, which we found critical
in achieving high performance and scalability.

Parallel journal commit. BarrierFS [49] and XFS [45]

process a journal transaction commit in a separate thread
to make a single journal commit parallel. However, Bar-
rierF'S serializes the journal commit when there is a
conflict between a running transaction and committing
transactions. Also, XFS suffers from excessive flush calls
for guaranteeing a write order or a durability [16].

Reducing flush overhead. There have been efforts
to reduce costly flush overhead in filesystem journaling.
RFLUSH [52] specifies an fsync() range and iJournal-
ing [32] performs per-file journaling. IRON filesysem [34]
omits flushing the journal commit block by using transac-
tional checksum. BarrierFS [10] leverages a cache barrier
command to reduce flush overhead.

Soft Updates. Soft Updates [11,27,41] is an alternative
to the filesystem journaling. It enforces write ordering
with an expensive transfer-and-flush mechanism [49].
CJF'S can guarantee the storage order without using
transfer-and-flush mechanism.

8 Conclusion

We propose CJFS, Concurrent Journaling Filesys-
tem. CJFS overcomes the scalability limitations of the
heavy-weight EXT4 journaling mechanism with four
novel techniques, namely Dual Thread Journaling, Multi-
Version Shadow Paging, Opportunistic Coalescing, and
Compound Flush. At a high level, CJFS parallelizes
the journaling activity (Dual Thread Journaling) and
avoids a page under IO being a bottleneck (Multi-Version
Shadow Paging). Whenever the contention is inevitable,
CJF'S actively lowers the overhead by coalescing concur-
rent requests at thread level (Opportunistic Coalescing)
and storage device level (Compound Flush). Our ex-
tensive evaluation shows CJFS achieves the significant
throughput and latency improvement with multicore scal-
ability and high storage device utilization against the
state-of-the-art filesystems.
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