
CrossFS: A Cross-layered Direct-Access File System
Yujie Ren (Rutgers University), Changwoo Min (Virginia Tech), Sudarsun Kannan (Rutgers University)

1 Introduction
The storage access latency in modern storage devices is

transitioning from milliseconds to microseconds [7]. While
modern applications strive to increase I/O parallelism, storage
software bottlenecks such as system call overheads, coarse-
grained concurrency control, and the inability to exploit stor-
age hardware concurrency continues to impact I/O perfor-
mance. Several kernel-level, user-level, and firmware-level
file systems have been designed to benefit from CPU paral-
lelism [9], direct storage access [2, 3, 5], or computational
capability embedded in the storage hardware [4]. However,
these approaches are designed in isolation and fail to exploit
modern, ultra-fast storage hardware.

Kernel-level file systems (Kernel-FS) satisfy fundamental
file system guarantees such as integrity, consistency, durabil-
ity, and security. Despite years of research, Kernel-FS designs
continue to suffer from three main bottlenecks. First, appli-
cations must enter and exit the OS for performing I/O, which
could increase latency by 1-4µs [3]. Recently found security
vulnerabilities have further amplified such costs. Second, even
state-of-the-art designs enforce unnecessary serialization (e.g.,
inode-level read-write lock) when accessing disjoint portions
of data in a file leading to high concurrent access overheads.
Third, Kernel-FS designs fail to fully exploit storage hardware-
level capabilities such as device-level compute, thousands of
I/O queues, and firmware schedulers, which impacts I/O la-
tency, throughput, and concurrency in I/O-heavy applications.

As an alternative design point, there is an increasing focus
towards designing user-level file systems (User-FS) for direct
storage access bypassing the OS [1–3, 5, 7]. However, satis-
fying the fundamental file system guarantees from untrusted
user-level is challenging [4]. While these designs have ad-
vanced the state of the art, some designs bypass the OS only
for data-plane operations (without data sharing) [1, 3, 7]. In
contrast, others provide full direct access by either sidestep-
ping or inheriting coarse-grained and suboptimal concurrency
control across threads and processes [2, 5], or even compro-
mise correctness. Importantly, most User-FS designs fail to
exploit the hardware capabilities of modern storage.

At the other extreme is the exploration of firmware-level
file systems (Firmware-FS) that embed the file system into the
device firmware for direct-access [4]. The Firmware-FS acts
as a central entity to satisfy fundamental file system properties.
Although a first important step towards utilizing storage-level
computational capability (with 4-8 cores in modern storage),
current designs miss out on benefiting from host-level multi-
core parallelism. Additionally, these designs inherit inode-
centric design for request queuing, concurrency control, and
scheduling, leading to poor I/O scalability.

In summary, current User-FS, Kernel-FS, and Firmware-FS
designs lack a synergistic design across the user, the kernel,
and the firmware layers, which is critical for achieving di-
rect storage access and scaling concurrent I/O performance
without compromising fundamental file system properties.

To address the aforementioned bottlenecks, we propose

Per-inode
Interval Tree

Op2 insert
Op3 lookup
Op6 insert

[0, 64k]

[0, 16k] [32k, 64k]

[0, 4k] [8k, 16k] [32k, 48k]

fd1 FD-queue fd2 FD-queue

App (Thread1)

create(File1) -> fd1
write(fd1, offset=8k, size=8k)
read(fd1, offset=8k, size=8k)

Op1
Op2
Op3

t1
t2
t3

I/O Scheduler

Device CPU Threads

Process #0 Process #1 … Process #N
cred_id : perm cred_id : perm … cred_id : perm

Credential Table (Transferred from OS)

TxB TxE
Meta-
data

NVM Data
Block Addr

Journal

Super
Block

Bitmap
Block

Inode
Block

Data
Block

On-Disk Structure

Super
Block

Inode
Cache

Dentry
Cache

Data
Cache

In-Mem Structure

App

LibFS

FirmFS

OS Kernel

Op1 and Op4:
Create FD-queue and
register FD-queue with
storage device

Data Buffer

head head

fdN FD-queue

Interval tree
lock

Interval tree
unlock

Op6 conflicts with Op2;
Op2 is added to fd1’s FD-queue;
Op2 is made no-op

Op1 create tree

Op5 insert

Op5Op2

Op6 NVM

App (Thread2)

open(File1) -> fd2
write(fd2, offset=32k, size=16k)
write(fd2, offset=8k, size=8k)

Op5
Op6 t6

no conflicts
conflicts

Op4
t5

t4

…

OS kernel only
responsible for
registering FD-queue
in DMA-able memory
region.

Figure 1: CrossFS Design Overview. Host-level LibFS converts
POSIX I/O calls to FirmFS commands, and manages FD-queues, interval tree
for checking block conflicts and ordering requests. FirmFS implements file
system with journaling and scheduler, and concurrently processes requests
across FD-queues. The OS component is responsible for the FD-queue setup
and updates credential table in FirmFS with host-level permission informa-
tion. Figure shows example of two instances sharing a file; Op1 to Op6 show
request execution with global timestamps t1 to t6. Op6 conflicts with Op2, so
Op6 is added to the same FD-queue as Op2 using an interval tree.

CrossFS1, a cross-layered direct-access file system that pro-
vides scalability, high concurrent access throughput, and lower
access latency. CrossFS achieves these goals through four
main principles. First, CrossFS disaggregate file system com-
ponents across user-space, firmware, and OS layers to ex-
ploit host and device-level compute resources. Second, aligns
each file descriptor to independent hardware I/O queue (FD-
queue) to provide fine-grained concurrency control at the file-
descriptor level granularity as opposed to inodes in current
file systems. Third, CrossFS protects the in-transit user data
and the file system state by leveraging persistence provided
by byte-addressable NVMs. Fourth, CrossFS unifies software
and hardware I/O schedulers into a single firmware scheduler
to improve throughput (more details in [8]).
CrossFS Layers. CrossFS enables POSIX-compatible ap-
plications to benefit from direct storage access. As shown in
Figure 1, CrossFS comprises of a user-level library (LibFS), a
firmware file system component (FirmFS), and an OS com-
ponent. The user-level library component (LibFS) provides
POSIX compatibility and handles concurrency control and
conflict resolution using the host-level CPUs (host-CPUs).
The OS component sets up the initial interface between LibFS
and FirmFS (e.g., I/O queues) and converts software-level
access control to hardware security control. The firmware
component (FirmFS) is the heart of the file system, enabling
applications to directly access the storage without compromis-
ing fundamental file system properties. The FirmFS taps into
storage hardware’s I/O queues, computational capability, and

1Prototype available at https://github.com/RutgersCSSystems/CrossFS

1

I/O scheduling capability for improving I/O performance.

Scalability. File system disaggregation alone is insufficient
for achieving I/O scalability, which demands revisiting file
system concurrency control, reducing journaling cost, and de-
signing I/O scheduling that matches the concurrency control.
We observe that file descriptor (and not inode) is a natural
abstraction of access in most concurrent applications, where
threads and processes use independent file descriptors to ac-
cess/update different regions of shared or private files (i.e.,
RocksDB maintains 3.5K open file descriptors). Hence, for
I/O scalability in CrossFS, we introduce file descriptor-based
concurrency control, which allows threads or processes to up-
date or access non-conflicting blocks of a file simultaneously.
Concurrency Control via Queue Ordering. In CrossFS,
file descriptors are mapped to dedicated hardware I/O queues
to exploit storage hardware parallelism and fine-grained con-
currency control. All non-conflicting requests (i.e., requests to
different blocks) issued using a file descriptor are added to a
file descriptor-specific queue (Op2 and Op5 in Figure 1). In con-
trast, conflicting requests are ordered by using a single queue
(Op2 and Op6 in Figure 1). This provides an opportunity for
device-CPUs and FirmFS to dispatch requests concurrently
with almost zero synchronization between host and device-
CPUs. For conflict resolution and ordering updates to blocks
across file descriptors, CrossFS uses a per-inode interval tree,
interval tree read-write semaphore (interval tree rw-lock), and
global timestamps for concurrency control. However, unlike
current file systems that must hold inode-level locks until re-
quest completion, CrossFS only acquires interval tree rw-lock
for request ordering to FD-queues. In short, CrossFS concur-
rency design turns the file synchronization problem into a
queue ordering problem.
CrossFS Challenges. Moving away from an inode-centric
to a file descriptor-centric design introduces CrossFS-specific
challenges. First, using fewer and wimpier device-CPUs for
conflict resolution and concurrency control impacts perfor-
mance. Second, mapping a file descriptor to an I/O queue (a
device-accessible DMA memory buffer) increases the number
of queues that CrossFS must manage, potentially leading to
data loss after a crash. Finally, overburdening device-CPUs
for serving I/O requests across hundreds of file descriptor
queues could impact performance, specifically for blocking
I/O operations (e.g., read, fsync).
Host Delegation. To overcome the challenge of fewer (and
wimpier) device-CPUs, CrossFS utilizes the cross-layered
design and delegates the responsibility of request ordering to
host-CPUs. The host-CPUs order data updates to files they
have access to, whereas FirmFS is ultimately responsible for
updating and maintaining metadata integrity, consistency, and
security with POSIX-level guarantees.
Crash-Consistency and Scheduler. To handle crash con-
sistency and protect data loss across tens and possibly hun-
dreds of FD-queues, CrossFS uses byte-addressable, persistent
NVMs as DMA’able and append-only FD-queues from which
FirmFS can directly fetch requests or pool responses. CrossFS
also designs low-cost data journaling for crash-consistency
of firmware file system state. Finally, for efficient scheduling
of device-CPUs, CrossFS smashes traditional two-level I/O
schedulers spread across the host-OS and the firmware into
one FirmFS scheduler equipped with configurable policies
that enhance file descriptor-based concurrency.

1 4 8 16
0

2000

4000

6000

of reader threads (with 4 writer threads)

T
hr

ou
gh

pu
t (

M
B

/s
) ext4-DAX

NOVA

DevFS

SplitFS

Strata

CrossFS

(a) Aggregated Read Throughput

1 4 8 16
0

1000

2000

3000

of reader threads (with 4 writer threads)

T
hr

ou
gh

pu
t (

M
B

/s
)

(b) Aggregated Write Throughput

Figure 2: Microbenchmark. Throughput of concurrent readers
and 4 writers randomly accessing a 12GB file. For CrossFS and
DevFS, 4 device-CPUs are used.

2 Evaluation
We evaluate CrossFS on a 64-core dual-socket server with

32GB DRAM and 512GB (4x128GB) Optane DC NVM
for storage and FD-queues. To emulate the proposed cross-
layered file system, similar to prior work [4], we implement
FirmFS in Linux kernel as a device driver with dedicated
kthreads. We reserve and use 2GB of DRAM for maintaining
FirmFS in-memory state. To emulate PCIe latency, we add a
900ns software delay [6] between the time a request is added
to the host’s FD-queue and the time a request is marked ready
for FirmFS processing.

In Figure 2a and Figure 2b, we vary the number of concur-
rent readers in the x-axis setting the concurrent writer count
to four threads. For this multithreaded micro-benchmark, we
use LibFS-level interval tree updates. We compare CrossFS
against ext4-DAX and NOVA (Kernel-FS), DevFS (Firmware-
FS), SplitFS and Strata (User-FS), all using Intel Optane DC
persistent memory for storage. As discussed earlier, all these
designs suffer from high overheads of inode-level rw-lock,
which impacts I/O scaling. In contrast, CrossFS’s cross-layered
design with file descriptor concurrency allows concurrent
read and write across FD-queues, achieving up to 3.64X read
throughput gains and 3.38X write throughput gains over state-
of-the-art file systems. Real-world applications RocksDB and
Redis show up to 2.32X and 2.35X gains (see [8]).

References
[1] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup De, Joel

Coburn, and Steven Swanson. Providing Safe, User Space Access to
Fast, Solid State Disks. SIGARCH Comput. Archit. News.

[2] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen.
Performance and Protection in the ZoFS User-Space NVM File System.
SOSP ’19.

[3] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. SplitFS: Reducing Software
Overhead in File Systems for Persistent Memory. SOSP ’19.

[4] Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, Yuangang Wang, Jun Xu, and Gopinath Palani. Designing
a True Direct-access File System with DevFS. FAST’18.

[5] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A Cross Media File System.
SOSP ’17.

[6] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W. Moore. Understanding PCIe
Performance for End Host Networking. SIGCOMM’18.

[7] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The
Operating System is the Control Plane. OSDI’14.

[8] Yujie Ren, Changwoo Min, and Sudarsun Kannan. CrossFS: A Cross-
layered Direct-Access File System. OSDI’20.

[9] Jian Xu and Steven Swanson. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. FAST’16.

2

	Introduction
	Evaluation

