
DANBI: Dynamic Scheduling of Irregular Stream
Programs for Many-Core Systems

Changwoo Min†‡ and Young Ik Eom†
†Sungkyunkwan University, Korea

‡Samsung Electronics, Korea
{multics69, yieom}@skku.edu

Abstract—The stream programming model has received a lot
of interest because it naturally exposes task, data, and pipeline
parallelism. However, most prior work has focused on static
scheduling of regular stream programs. Therefore, irregular
applications cannot be handled in static scheduling, and the load
imbalance caused by static scheduling faces scalability limitations
in many-core systems. In this paper, we introduce the DANBI1

programming model which supports irregular stream programs
and propose dynamic scheduling techniques. Scheduling irregular
stream programs is very challenging and the load imbalance
becomes a major hurdle to achieve scalability. Our dynamic load-
balancing scheduler exploits producer-consumer relationships
already expressed in the stream program to achieve scalability.
Moreover, it effectively avoids the thundering-herd problem and
dynamically adapts to load imbalance in a probabilistic manner.
It surpasses prior static stream scheduling approaches which are
vulnerable to load imbalance and also surpasses prior dynamic
stream scheduling approaches which have many restrictions on
supported program types, on the scope of dynamic scheduling,
and on preserving data ordering. Our experimental results on
a 40-core server show that DANBI achieves an almost linear
scalability and outperforms state-of-the-art parallel runtimes by
up to 2.8 times.

Keywords—Stream Programming, Software Pipelining, Schedul-
ing, Load Balancing, Irregular Programs

I. INTRODUCTION

The prevalence of multi-core processors has renewed in-
terest in parallel programming models and runtimes, such as
StreamIt [1], OpenCL [2] , Cilk [3], TBB [4], and Galois [5].
Also, the application types running on the processors have
been expanded from regular applications such as scientific
simulations to irregular applications such as computer graphics
and big data analysis [5], [6], [7].

The stream programming model, such as StreamIt, has been
extensively studied because it naturally exposes task, data, and
pipeline parallelism [1]. In the stream paradigm, a program
is modeled as a graph where computation kernels commu-
nicate through FIFO data queues. Since each computation
kernel accesses only local input and output data queues, it
can be effectively applied to various hardware architectures
including shared memory multiprocessors, heterogeneous mul-
tiprocessors, GPGPUs, and distributed computing systems [1],

1“DANBI” is a Korean word meaning “timely rain”; we picked it as the
project name for its nature of dynamic resource scheduling.

(a) TDE (b) FMRadio

Fig. 1: Scalability of StreamIt programs on a 40-core system

[8], [9], [10], [11], [12], [13], [14]. Most previous work
on stream programming models and runtimes has focused
on the static scheduling of regular stream programs where
the input/output rates of data queues are statically known
at compile time. Since irregular programs with dynamic in-
put/output rates and feedback loops cannot be expressed in
that model, its applicability is significantly limited. Moreover,
static scheduling exhibits serious limitations in performance
scalability and portability to complex hardware architectures.
In static scheduling, the compiler generates static schedules for
each thread based on the work estimation of each kernel, and
the runtime iteratively executes the pre-computed schedules
with barrier synchronization. Therefore, the effectiveness of
the static scheduling is basically determined by the accuracy
of the performance estimation which is difficult or barely
possible in many hardware architectures. For instance, even
commodity x86 servers show 1.5 – 4.3 times difference in
core-to-core memory bandwidth [15]. Furthermore, the load
imbalance caused by an inaccurate work estimation or data-
dependent control flow significantly deteriorates performance
scalability as the core count increases. In Figure 1, we show
the scalability of the StreamIt runtime, which is a state-of-
the-art stream system using static scheduling. Two StreamIt
programs were run on a 40-core Intel IA64 NUMA system.
(See Section IV for a detailed description of the environment.)
In theory, they should be perfectly scalable, because the com-
piler generates perfectly balanced schedules for each thread
by its estimation and the programs do not have any data-
dependent control flow. However, in reality, the stall caused
by the load imbalance rapidly increases as the core count

978 -1-4799-1021-2/13/$31.00 ©2013 IEEE 189

increases and thus significantly limits the scalability. On 40
cores, communication-intensive TDE [1] suffers from a larger
load imbalance: the 85.3% execution time is spent to wait
for the barrier synchronization and thus TDE only achieves a
speedup of 7.5 times. Fifield also reported similar results on
an AMD IA64 NUMA system [11].

Although many approaches have been proposed to overcome
the limitations of static scheduling, prior work on dynamic
scheduling is insufficient because they have restrictions on the
supported types of stream programs [4], [11], [13], [16], [17]
or partially perform dynamic scheduling [12], [14] or limit the
expressive power by giving up the sequential semantics [6],
[18]. Although Flexible Filters [16] and SKIR [11] propose
dynamic scheduling of StreamIt programs based on a backpres-
sure mechanism, they support only regular stream programs.
GRAMPS [6], [18], the flow graph feature in TBB [4], and
the Bobox system [17] dynamically schedule irregular stream
programs. However, GRAMPS does not guarantee data order-
ing between data parallel kernels, thus the expressive power
of the data parallel kernels is limited and additional reordering
overhead is imposed. Also, GRAMPS and the flow graph do
not support peek operation, which is commonly used for
sliding window computation [19]. The Bobox system does not
support data parallel kernels. In distributed stream processing
systems, Elastic Operator [14], Borealis [12], and ACES [13]
adopt dynamic scheduling mechanisms. However, they have
limitations: Elastic Operator [14] handles only the degree
of data parallelism in a stateless component. Borealis [12]
assumes all components are stateless. ACES [13] does not
support cyclic pipelines.

In this paper, we introduce the DANBI programming model,
which supports irregular stream programs, and propose its dy-
namic scheduling mechanism. This paper makes the following
specific contributions:
• We introduce the DANBI parallel programming model

which extends the stream programming model to support
irregular stream programs. DANBI allows a cyclic graph
with feedback queues and the dynamic input/output rates
of data queues. In contrast to GRAMPS [6], [18], a
DANBI program preserves its sequential semantics even
under parallel execution. Data ordering across multiple
queues in a kernel can be optionally enforced by our
ticket synchronization mechanism. With the combination
of the feedback queues and ticket synchronization, we
can effectively describe complex irregular programs,
such as recursive algorithms.

• Since the DANBI program graph contains all the
producer-consumer relationships, there are a lot of op-
portunities to schedule more efficiently. To this end, our
scheduler dynamically performs load balancing based on
the occupancy of the input and output queues and thus
naturally exploits the producer-consumer relationships.
Although such a scheduling scheme could help to im-
prove scalability, naive solutions will face limitations
on scalability. We found that exploiting the proper
degree of pipeline parallelism over data parallelism
is critically important to achieve scalability in many-
core systems. Excessive data parallelism could result in

Sequential
Sort

Test SinkTest Source Split Merge

Sequential
Kernel

Parallel
Kernel

Starting Kernel
Attribute

Read-Only
Buffer

Data
Queue

Feedback
Data Queue

Fig. 2: A DANBI program: merge sort graph

Queue
q_accessor* reserve_push(q, push_num, ticket_desc)
void commit_push(q_accessor)
q_accessor* reserve_peek_pop(q, peek_num, pop_num, ticket_desc)
void commit_peek_pop(q_accessor)
void* get_q_element(q_accessor, i)
void consume_ticket(ticket_desc)

Read-only Buffer
void* get_rob_element(rob, i)

TABLE I: The DANBI Core API

the thundering-herd problem – the gain from parallel
execution can be overshadowed by the cost of commu-
nication and synchronization among contending threads.
To effectively avoid the thundering-herd problem and
dynamically adapt to load imbalance, we propose two
probabilistic scheduling techniques, PSS and PRS. (See
Section III-A.) In contrast to prior work [11], [12], [13],
[14], [16], our scheduling mechanism can fully support
irregular stream programs without any restrictions and
can dynamically adjust task, data, and pipeline paral-
lelism simultaneously. While our scheduling mechanism
is developed for the DANBI programming model, the
techniques can be applied to other stream programming
models, such as StreamIt.

• We developed the DANBI benchmark suite with seven
applications ported from StreamIt, Cilk, and OpenCL.
Also, we evaluated the performance and scalability of
the DANBI runtime and obtained an almost linearly
scalable performance on a 40-core IA64 system. In com-
parison with other parallel runtimes, the DANBI runtime
outperforms the state-of-the-art parallel runtimes up to
2.8 times on 40 cores.

The rest of this paper is organized as follows. Section II
introduces the DANBI programming model and Section III
elaborates on the design of the DANBI runtime for many-core
systems. Section IV shows the extensive evaluation results.
Related work is described in Section V. Finally, in Section VI,
we conclude the paper.

II. THE DANBI PROGRAMMING MODEL

The DANBI programming model extends state-of-the-art
stream programming models [1], [6], [18] to support irregular
stream applications. A DANBI program is represented as
a graph of independent computation kernels communicating
through unidirectional data queues. The graph can be cyclic
with feedback data queues. It is not necessary to know the

190

input/output rates of the data queues at the compile time.
Figure 2 presents an example of a DANBI program graph,
merge sort, where the recursive concurrent merge operation
is represented by using a backward feedback data queue. As
described in Table I, seven core APIs are provided for writing
a computation kernel. In the rest of this section, we explain
each element of the DANBI programming model in detail.

Computation Kernel: It is a user-defined function that
operates on zero or more input queues, output queues, and
read-only buffers. It is explicitly defined as a sequential or
parallel kernel. A sequential kernel must run serially with a
thread, whereas multiple threads can concurrently execute a
parallel kernel for data parallelism. Therefore, all parallel ker-
nels should be stateless. Additionally, if a kernel is annotated
as a starting kernel, it is executed at the beginning. A DANBI
program has at least one starting kernel. The input/output rates
of the data queues can dynamically vary at runtime.

Data Queue: It is a unidirectional communication channel
between kernels, which is modeled as an array based FIFO
queue with push, pop, and peek operations. Concurrent
producers and consumers for a parallel kernel can work on the
same data queue. While the traditional stream models statically
determine the degree of data parallelism by using split/join,
which replicates data queues and kernels [1], [8], [9], [10],
[11], [20], our concurrent data queue approach enables the
DANBI runtime to dynamically determine the level of data
parallelism by adjusting the number of running threads for a
kernel. To work on multiple queue items at the same time with
efficiency, a part of the data queue is first reserved for exclusive
access, and then committed to notify when exclusive use ends.
In the reserve-commit semantics, peek and pop operations
are combined in one operation, peek_pop. From an applica-
tion point of view, all operations are blocking ones. Reserve
operations are blocked when there are not enough elements
or rooms. In other words, when there are enough elements
or rooms, concurrent reserve operations succeed regardless
of whether a previous reserve operation is committed or not.
Even under concurrent reserve operations, commit operations
are totally ordered according to the reserve order. A commit
operation is blocked when the previous reserve operation is not
yet committed. Computation can be interleaved with reserve
and commit operations. When a queue operation is blocked,
the DANBI runtime schedules other threads. The details of our
scheduler will be explained in Section III.

Ticket Synchronization: FIFO ordering on queues between
sequential kernels is maintained by default. However, queues
with parallel kernels are not automatically ordered, since a
parallel kernel can execute out of order. Essentially, there are
two approaches to deal with data ordering for parallel kernels:
total ordering by using split/join [1], [8], [9], [10], [11], [20]
and no ordering [18], [21], [22]. The former is not adequate
for irregular workloads because the input/output rates should
be statically known for a joiner to deterministically merge
the split data queues. Since the latter does not preserve the
sequential semantics, it limits the expressive power of the data
parallel kernel and imposes additional sorting overhead at the
last sequential kernel.

1 __parallel
2 void kernel(q **in_qs, q **out_qs, rob **robs) {
3 q *in_q = in_qs[0], *out_q = out_qs[0];
4 ticket_desc td = {.issuer=in_q, .server=out_q};
5 rob *size_rob = robs[0];
6 int N = *(int *)get_rob_element(size_rob, 0);
7 q_accessor *qa;
8 float avg = 0;
9

10 qa = reserve_peek_pop(in_q, N, 1, &td);
11 for (int i = 0; i < N; ++i)
12 avg += *(float *)get_q_element(qa, i);
13 avg /= N;
14 commit_peek_pop(qa);
15

16 qa = reserve_push(out_q, 1, &td);
17 *(float *)get_q_element(qa, 0) = avg;
18 commit_push(qa);
19 }

Listing 1: A parallel kernel in the DANBI programming
model

To support ordering-dependent streaming applications, we
introduce a ticket synchronization mechanism which enforces
the ordering of the queue operations for a parallel kernel.
The key idea is analogous to serving customers in a bank:
a customer first gets a ticket from a ticket issuer, and then
waits until the teller’s serving ticket number matches the issued
ticket number. In the DANBI programming model, a ticket is
the number which represents the order. The ticket issuer issues
a ticket whose value starts from zero and increases by one
at each issuance. The ticket server manages a serving ticket
number which starts from zero and increases by one after each
service. It provides service only when the requester’s ticket
number is the same as the serving ticket number. Otherwise,
the requester is blocked, and the DANBI runtime schedules
other threads. Since the initial issuing ticket number and the
initial serving ticket number are the same, the first ticket issued
is served first. After the issuing and serving ticket numbers
are incremented, the second ticket issued is served. Thus,
the serving order is totally ordered by the issuing order. A
data queue is optionally defined to issue or serve a ticket
in the reserve operations. To serve a ticket, the source of
the issued ticket is also described. Since an issued ticket
can be consumed by multiple queues, we can enforce data
ordering across multiple queues. When multiple queues are
conditionally accessed with an issued ticket, the serving ticket
number of the unaccessed queue needs to be increased by using
consume_ticket() in Table I to keep all relevant ticket
numbers synchronized.

Read-only Buffer: It is an array of pre-computed values,
which can be read from a computation kernel and is accessible
via the index.

Listing 1 is an example of a DANBI kernel code, which
is defined as a parallel kernel (Line 1). The kernel calculates
simple moving averages for N input elements (Line 10–14)
and generates the average to an output queue (Line 16–18).
The order of push operations is preserved in order of pop
operations by using the ticket synchronization; a ticket is

191

issued when popping from the input queue, in_q, and it is
served when pushing to the output queue, out_q (Line 4).
The initialization code, which creates kernels, queues, and
read-only buffers and connects them, is omitted due to space
limitations.

In summary, compared to previous work, the DANBI pro-
gramming model provides several important features: (a) sup-
porting dynamic input/output rates, (b) supporting a cyclic
graph with feedback data queues, (c) multiple fan-in and fan-
out of data queues for a kernel, (d) supporting concurrent pro-
ducers and consumers working on a data queue, (e) supporting
peek operation and (f) optionally enforcing total ordering
of data queue operations for a kernel. The combination of
the above features provides a simple but powerful mechanism
to describe irregular stream programs. For example, recursive
algorithms such as parallel reduction can be expressed by using
ticket synchronization and feedback queues.

III. THE DANBI RUNTIME FOR MANY-CORE SYSTEMS

Even though the DANBI programming model is general and
powerful, designing an efficient and scalable runtime for many-
core systems is challenging. The key technical challenges are
as follows:
• Since the DANBI programming model supports irregular

applications with dynamic input/output rates and feed-
back loops, there is no statically determinable schedule.
Thus, static scheduling approaches [1], [8], [9], [10] can-
not be used. Moreover, prior work on dynamic streaming
is insufficient because it has many restrictions on sup-
ported program types [4], [11], [13], [16], [17], on the
scope of dynamic scheduling [12], [14], and on reserving
data ordering [6], [18]. Our dynamic load-balancing
scheduling mechanism does not rely on a static work
estimation, which could be inaccurate in modern com-
plex many-core architectures, or offline profiling. It
makes scheduling decisions based on queue occupancy
and dynamically adjusts the degree of data parallelism
and pipeline parallelism to avoid the thundering-herd
problem, and thus improves scalability.

• To achieve scalable speedup in many-core systems, most
concurrently accessed data structures should also be
scalable. In cache-coherent many-core systems, frequent
invalidation of a shared cache-line results in performance
collapse of the entire system [23], [24]. Therefore, care-
ful design of the contended data structures is essential.
Especially, when waiting for a commit order or ticket
serving order, a naive approach, which repeatedly ac-
cesses a shared cache-line to check the order, has signifi-
cant overhead due to excessive coherence traffic. Instead,
we design our data queue and ticket synchronization to
check separated cache-lines: a list-based queue is used
to check the commit order similar to MCS list-based
queuing lock [25] and an array accessed via a ticket
number is used to check ticket order similar to array-
based queuing locks [26], [27]. Since all concurrent
threads read and update the separated cache-line, we
can minimize shared cache-line invalidation and improve
scalability.

Due to space limitations, we do not present our scalable
data queue and ticket synchronization design in this paper, but
focus on our dynamic load-balancing scheduling mechanism.

A. Dynamic Load-Balancing Scheduling
The DANBI runtime employs a user-level thread mechanism

on top of pinned native threads to avoid expensive mode
switching overhead [28]. Since context-switching between
user-level threads occurs only at function call boundaries,
i.e., queue operations, the number of spilled registers can be
minimized. Hereafter, we use the term thread for a user-level
thread and native thread to explicitly mention a native OS
thread. In the DANBI runtime, each native thread runs its
own scheduler with no predetermined schedules. The DANBI
scheduler decides a next runnable kernel and a thread to run
the selected kernel. Scheduling decisions are made based on
how related queues are filled, and thus producer-consumer
relationships in a stream graph are naturally exploited. We
make scheduling decisions at two points: (1) when a queue
operation is blocked with a queue event such as full, empty or
waiting, and (2) when the thread execution of a parallel kernel
is ended. Queue Event-Based Scheduling (QES) is used at the
first case to decide the next runnable kernel (§ III-A2). For
the second case, Probabilistic Speculative Scheduling (PSS)
and Probabilistic Random Scheduling (PRS) are used to decide
whether to keep executing the same kernel or switch to another
(§ III-A3 and § III-A4). Since PSS uses the producer-consumer
relationships, PSS is preferred to PRS. If both PSS and PRS
are not taken, we keep executing the same kernel. When a
thread is blocked, it is pushed to a per-kernel ready queue,
and it is popped from the queue when re-scheduled. We
implemented the ready queue as a concurrent FIFO queue to
avoid starvation.

In the rest of this section, we will elaborate our scheduling
mechanism in detail.

1) Determining the Initial Schedule: At the beginning of the
DANBI runtime, each native thread selects one of the unchosen
starting kernels. If there is no such kernel, non-starting parallel
kernels are randomly selected. After that, each native thread
spawns a new user-level thread for the corresponding kernel
and transfers control to the user-level thread.

2) Queue Event-Based Scheduling (QES): A queue opera-
tion can be blocked, when a queue is empty, full, or waiting for
a commit or ticket order. When blocked, our scheduler selects
a next runnable kernel and a thread by using Queue Event-
Based Scheduling (QES) (Algorithm 1). When an input queue
is empty, it schedules the producer of the queue. Similarly,
when an output queue is full, it schedules the consumer of the
queue. When it is blocked, while waiting for a commit or a
ticket order, another thread of the same kernel is scheduled.

Thread life-cycle management is incorporated into this pro-
cess. The goal is to reduce the memory footprint by minimizing
the number of threads. After selecting a kernel, it first pops a
thread from the per-kernel ready queue. When the ready queue
is empty, it spawns a thread only if creating another thread
does not violate the concurrency constraint of the kernel. If
it cannot spawn a new thread – i.e., a running thread for the

192

sequential kernel already exists, we randomly re-select another
kernel. When the thread of a parallel kernel has no successful
queue operation, we can safely delete the thread since it has
no side effects.

QES performs dynamic load balancing when a data queue
becomes full or empty with no predetermined schedules.
Though it is similar to the backpressure mechanism [11], [16],
[18], we extend it to incorporate waiting for a commit/ticket
order and thread life-cycle management.

Algorithm 1: Queue Event-Based Scheduling
Input: current running kernel rk, current running thread rt,

queue q, queue event e
Output: selected kernel k, selected thread t

1 if e is waiting then
2 k = rk;
3 t = ready queue[k].pop();
4 if t is null then t = rt;
5 else ready queue[k].push(rt);
6 else
7 if rk is a parallel kernel and there is no successful queue

operation for the kernel then delete rt;
8 else ready queue[rk].push(rt);
9 if e is empty then k = producer kernel of q;

10 else if e is full then k = consumer kernel of q;
11 repeat
12 t = ready queue[k].pop();
13 if t is null then
14 if k is a parallel kernel then
15 t = spawn a new thread;

16 else if k is a sequential kernel then
17 if there is no running thread for k then
18 t = spawn a new thread;

19 else
20 k = randomly select a kernel in the graph;
21 continue;

22 until false;

3) Probabilistic Speculative Scheduling (PSS): In QES,
many threads for a kernel may make the same scheduling
decision if they schedule at roughly the same time. As a result,
QES tends to maximize the degree of data parallelism as far as
the sizes of input/output queues are available. The high degree
of data parallelism, however, could result in the thundering-
herd problem, especially when queue operations are ordered
by ticket synchronization. If we exploit pipeline parallelism
more aggressively than data parallelism, we can avoid the
thundering-herd problem and improve scalability by reducing
the degree of data parallelism.

To exploit pipeline parallelism more aggressively, we intro-
duce Probabilistic Speculative Scheduling (PSS). At the end of
the thread execution of a parallel kernel, we decide whether to
continue running the same kernel or not. We probabilistically
schedule another kernel before the corresponding queue be-
comes completely empty or full. For brevity, let’s assume that
pipelined parallel kernel Ki−1, Ki, and Ki+1 are connected by
queue Qx and Qx+1. Assuming an infinite number of threads

are running for the three kernels, the transition probability
between the kernels is determined by how much each queue is
filled. Under this condition, incoming transition probabilities
from Ki−1 and Ki+1 to Ki are defined as follows:

Pi−1,i = Fx

Pi+1,i = 1− Fx+1

where Pm,n is the transition probability from Km to Kn, and
Fx is the fill ratio of Qx ranging from 0 to 1. In the same
way, we can calculate the bidirectional outgoing transition
probabilities of Ki as follows:

Pi,i+1 = Fx+1

Pi,i−1 = 1− Fx

After balancing out the incoming and outgoing probabilities,
the balanced transition probabilities for parallel kernel Ki are
defined as follows:

P b
i,i−1 = max(Pi,i−1 − Pi−1,i, 0)

P b
i,i+1 = max(Pi,i+1 − Pi+1,i, 0)

where P b
m,n is the balanced transition probability from Km to

Kn. At the end of the thread execution of a parallel kernel,
we arbitrarily determine the transition direction and take the
transition with the probability of P b

i,i−1 or P b
i,i+1. If we decide

to take the transition to another kernel, we select a thread in a
similar way as in Algorithm 1. Otherwise, we try Probabilistic
Random Scheduling described in Section III-A4. For a kernel
with multiple input and output queues, we take the emptiest
input queue and the fullest output queue.

Since we randomly choose the transition direction, the actual
transition probabilities are as follows:

P t
i,i−1 = 0.5× P b

i,i−1

P t
i,i+1 = 0.5× P b

i,i+1

P t
i,i = 1− P b

i,i−1 − P b
i,i+1

where P t
m,n is the transition probability from Km to Kn

taken by our scheduler. P t
i,i, transition probability to itself,

is a probability of no transition. In the steady state with
no thread transition, P t

i,i−1 and P t
i,i+1 are 0, and P t

i,i is 1.
Under this situation, Fx and Fx+1 are 0.5. Therefore, PSS
iteratively attempts to assign threads to kernels for filling all
the data queues in a graph by half. Scheduling to fill queues
in half actually means scheduling to perform double buffering
which is widely used for overlapping communication and
computation. It is arithmetically simple and does not require
predetermined schedules.

4) Probabilistic Random Scheduling (PRS): PSS works well
in most cases, but when the execution time of a kernel is
significantly different due to data dependent control flow or
fine-grain architecture variability such as shared cache miss,
simultaneous multi-threading (SMT), or dynamic voltage and
frequency scaling (DVFS), waiting time for the commit or
ticket order could increase significantly. To dynamically adapt
to such circumstances, we use a Probabilistic Random Schedul-
ing (PRS) policy. If a thread waits too long for a commit

193

or ticket order, we schedule a randomly selected kernel. The
probability of random scheduling for Ki, P r

i , is defined as
follows:

P r
i = min(Ti/C, 1)

where Ti is the number of consecutive waiting events for a
thread, and C is a large constant greater than 1 (10,000 in our
experiments). The probability increases linearly as the waiting
count becomes larger. It is analogous to a bank customer who
has waited too long in line and will likely switch to a different
bank next time. However, only when not taking PSS, we decide
whether to take PRS or not with probability P r

i . If taking PRS,
we randomly select a kernel and a thread in a similar way to
Algorithm 1. This too is arithmetically simple and does not
require predetermined schedules.

5) Terminating a DANBI program: In procedural languages,
a program is terminated when the program counter reaches
the end of the program. However, since the control flow
of a DANBI application is sometimes determined by queue
status, terminating a DANBI program is different from the
methods used in procedural languages. When a starting kernel
is terminated, it propagates a termination token through the
output queues. A non-starting kernel is terminated when it
receives the termination tokens from all input queues. When
all starting and non-starting kernels are terminated, a DANBI
program is finally terminated. However, there is no guarantee
that the DANBI program will be terminated when the queue
size is inadequate or the behavior of the feedback queue is
uncontrolled. Even static scheduling mechanisms have diffi-
culty guaranteeing deadlock freedom with feedback queues [8],
[29]. We argue that a program with inadequate queue sizes or
uncontrolled feedback queues is an incorrect DANBI program.

IV. EVALUATION

We first describe our benchmark applications and how we
created them. Next, we evaluate the scalability of the DANBI
runtime and analyze how our dynamic load-balancing schedul-
ing techniques contribute to achieving scalability. Also, we an-
alyze the behavior of our thread life-cycle management scheme
and the sensitivity of the performance to various queue sizes.
Finally, we compare the scalability and the performance of
the DANBI runtime with other parallel runtimes, StreamIt [1],
OpenCL [2], and Cilk [3]. We performed all experiments
on a 4-socket system with 10-core 2.0 GHz Intel Xeon E7-
4850 (Westmere-EX) processor (40 cores in total). The system
has 256 KB per-core L2 caches, 24 MB per-processor L3
caches. Each processor forms a NUMA domain with 8 GB
local memory (32 GB in total). The processors communicate
through a 6.4 GT/s QPI interconnect. The machine runs 64-bit
Linux Kernel 3.2.0 with GCC 4.6.3.

A. Benchmark Suite
In order to broadly exercise the DANBI programming model

and runtime, we developed seven benchmark applications
from other parallel programming models. Table II shows the
characteristics of the benchmark applications. All benchmarks
have plenty of parallelism: for all applications, all kernels

Benchmark Description Origin Kernel Queue

FilterBank Multirate signal processing filters StreamIt 44 58
FMRadio FM Radio with equalizer StreamIt 17 27
FFT2 64 elements FFT StreamIt 4 3
TDE Time delay equalizer for GMTI StreamIt 29 28
MergeSort Merge sort Cilk 5 9
RG Recursive Gaussian image filter OpenCL 6 5
SRAD Diffusion filter for ultrasonic image OpenCL 6 6

TABLE II: Benchmark descriptions and characteristics

except the test source and test sink are parallel kernels and all
data queue operations are ordered by ticket synchronization.
We replaced file I/O operations in the original benchmarks with
memory operations to limit the effect of the OS kernel. As a
baseline for the evaluation, we set the size of each data queue
to maximally exploit data parallelism (i.e. for all 40 threads
to work on a queue). More specifically, when a producer of
a queue, Q, generates maximum P -sized data at once and a
consumer of Q consumes maximum C-sized data at once, the
size of Q is determined as max(P ∗ T,C ∗ T), where T is
the number of native threads assigned for the DANBI runtime.
P and C are naturally determinable by a problem itself: for
example, they would be the size of a image, one row or column
of a image for RG and SRAD and the number of elements
for MergeSort. We will investigate how the queue size affects
performance in Section IV-C.

From StreamIt benchmark suite [1], we ported two compute-
intensive benchmarks, FilterBank and FMRadio, with complex
pipelines, and another two communication-intensive bench-
marks, FFT2 and TDE, with straight pipelines. The numbers
of kernels are different from the original StreamIt benchmark
suite, because the DANBI programming model does not have a
splitter/joiner [1] and we manually fuse kernels with the same
code. We could nearly mechanically port StreamIt applications
to DANBI applications, since the DANBI programming model
supports all the core functionalities of StreamIt including
peeking and data ordering. The only manual work was to
change the filter arguments in StreamIt to read-only buffers
in the DANBI programming model.

To investigate how recursive algorithms can effectively be
represented in the DANBI programming model, we ported
a parallel merge sort from Cilk [30]. MergeSort recursively
splits sorted arrays into two, and then merges the two con-
currently [31]. As shown in Figure 2, the recursive spawn-
sync parallelism in Cilk can be successfully transformed to
a DANBI program. Cilk functions synchronized by a barrier
are naturally mapped to DANBI parallel kernels, and Cilk re-
cursive functions can be represented by using feedback queues
and ticket synchronization in the DANBI programming model.
Function arguments in Cilk can be represented as either a read-
only buffer or a ticket synchronized data queue depending on
whether they are changing in the middle of execution or not. In
terms of scheduling, it is the most challenging application in
our benchmark suite: data-dependent control flows in every
kernel, highly biased workload among kernels (i.e., in our
profiling, most benchmark time is spent in the Merge kernel),

194

(a) Random Work Stealing (b) QES (c) (b) + PSS (d) (c) + PRS

Fig. 3: Scalability of DANBI from 1 to 40 cores. Relative speedup is normalized to the single core performance in Figure 3d.

0%

20%

40%

60%

80%

100%

W Q S R W Q S R W Q S R W Q S R W Q S R W Q S R W Q S R

FilterBank FMRadio FFT2 TDE MergeSort RG SRAD

Ex
ec

. T
im

e
Br

ea
kd

ow
n OS Kernel

Stall

Scheduler

Queue Operation

Application

Fig. 4: Execution time breakdown of DANBI on 40 cores. (W): Random Work Stealing, (Q): QES, (S): (Q) + PSS, and (R):
(S) + PRS

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

co
re

time (seconds)

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

co
re

time (seconds)

Recursive
Gaussian1

Test Sink

Test Source

Transpose1

Recursive
Gaussian2

Transpose2

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

co
re

time (seconds)

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

co
re

time (seconds)(a) RG graph

(b) Random Work Stealing (c) QES

(d) (c) + PSS (e) (d) + PRS

Fig. 5: Comparison of kernel scheduling for RG on 40 cores. The color in Figure 5b-e represents that the kernel with the same
color in Figure 5a is running. For example, the yellow portions represent that RecursiveGaussian2 is running. The black color
represents the stall cycle.

195

and few opportunities to exploit pipeline parallelism due to the
short pipeline.

RG and SRAD are data-parallel image filter applications
from OpenCL. They were ported from NVIDIA OpenCL
SDK [32] and Rodinia suite [33], respectively. Porting OpenCL
applications to DANBI applications takes similar effort to that
of Cilk. Barrier synchronized OpenCL kernels are naturally
mapped to DANBI parallel kernels.

As discussed earlier, the porting an existing parallel program
to a DANBI program is straightforward in many cases. One
of the most difficult cases is that an original program does
not sequentially consume the input data. For example, in
MergeSort, when merging two chunks into one larger chunk,
the merge sort in Cilk, first, recursively divides the chunks
into multiple sub-chunks and then merges pairs of the sub-
chunks in parallel. In Cilk, the sub-chunks are represented via
indexes in the original chunk. However, in streaming models
including DANBI, data should be sequentially consumed from
an input queue. Thus, the additional rearrangement of the pairs
of the sub-chunks is needed to perform parallel merging as in
Cilk. Though the additional rearrangement results in the slower
performance of DANBI in a smaller number of cores, dynamic
scheduling of DANBI eventually catches up the performance
in a larger number of cores. We will discuss this in detail in
Section IV-D.

B. Scalability of the DANBI Runtime

To evaluate the scalability of the DANBI runtime, we ran
each application by varying the number of cores from 1 to
40. As we illustrated in Figure 3, we ran each application
in four different scheduling configurations to evaluate the
effectiveness and scalability of the scheduling techniques. The
configuration in Figure 3a uses random work stealing which
does not use the producer-consumer relationships to make
scheduling decisions. For comparison, our baseline scheduling
configuration in Figure 3b uses only the basic QES scheme.
In addition to that, in Figure 3c and Figure 3d, we adopt PSS
and PRS, respectively. For direct comparison of the graphs
in Figure 3, relative speedup is normalized to the single core
performance in Figure 3d. For further analysis, Figure 4 shows
the execution time breakdown for each application when using
all 40 cores. Each bar is spilt into five categories, showing the
fraction of time spent in the application code, queue operation,
scheduler, stall, and OS kernel. In the DANBI runtime, the stall
means no work progress due to waiting for a commit or ticket
ordering. The breakdown is obtained with a cycle-accurate
low-overhead profiling code using a CPU time-stamp counter
and Linux perf record command [34] which collects pro-
files based on sampling. Additionally, Figure 5 illustrates how
each scheduling mechanism behaves in the kernel scheduling
of RG on 40 cores. The colors in Figure 5b-e correspond to
the colors of kernels in Figure 5a, except for black which
represents the stall cycle.

Random Work Stealing: As Figure 3a shows, the scal-
ability of random work stealing is very dependent on the
characteristics of applications. The compute-intensive appli-
cations such as FilterBank and SRAD scale nearly linearly up

to 40 cores, whereas MergeSort and RG, the least compute-
intensive applications, start to degrade performance at 25 cores
and 30 cores, respectively. That is because large fractions
of time are expended on stalling, 19.0% for MergeSort and
24.8% for RG, as shown in Figure 4 and Figure 5b. The
increased stall increases fractions of the queue operation time
and the scheduler time. As a result, only the small fractions are
expended for the applications, 34.2% for MergeSort and 36.8%
for RG. Mean speedup over single core performance is 25.3
times. Our experimental results clearly show the limitations
of random work stealing on stream parallelism: suboptimal
scheduling decisions without using producer-consumer rela-
tionships incur a large overhead especially in communication-
intensive applications.

Queue Event-Based Scheduling: By using the basic QES
scheme, mean speedup improves from 25.3 times to 28.9
times. Moreover, MergeSort and RG scale up to 30 and 35
cores respectively. As Figure 3b and Figure 4 show, QES
significantly reduces the fraction of the stall: from 19.0%
to 13.8% for MergeSort and from 24.8% to 13.3% for RG.
Interestingly, the fractions of the queue are rather increased.
As we mentioned in Section III-A3, QES tends to maximize
the degree of data parallelism as far as possible, and the high
degree of data parallelism along with the ticket synchronization
could result in the thundering-herd problem. In Figure 5c, most
threads work for a kernel at the same time and it increases
the contention of the data queues and the stall induced by
ticket synchronization. The large fraction of time for the queue
operation and the stall in Figure 4 confirms this.

Probabilistic Speculative Scheduling: PSS effectively
avoids the thundering-herd problem by aggressively exploiting
pipeline parallelism over data parallelism. In the PSS schedul-
ing in Figure 5d, various kernels are executed at the same
time, and there are very few stall cycles, as shown in black.
As a result of this, the fractions of the queue operation and
the stall in RG are significantly reduced: from 51% to 14%
for the queue operation, and from 13.3% to 0.03% for the
stall. In the case of MergeSort, performance is marginally
improved because there is little opportunity to exploit pipeline
parallelism. Mean speedup also improves to 30.8 times.

Probabilistic Random Scheduling: In MergeSort, the time
taken for merging the sub-chunks heavily depends on the size
of the sub-chunks. Therefore, higher data parallelism of the
Merge kernel increases the chance of load imbalance, since
the different sized sub-chunks are likely to be merged in
parallel. Figure 3d shows that PRS effectively mitigates the
load imbalance. MergeSort speedup on 40 cores improves
from 19.2 times to 23.0 times. Also, the performance of the
two communication-intensive benchmarks, FFT2 and TDE,
are likely to be affected by fine-grain architecture variability
such as shared cache and NUMA. Figure 3d shows that PRS
effectively adapts to such circumstances and thus improves
the scalability: from 30.5 times to 34.6 times for FFT2 and
from 23.6 times to 30.2 times for TDE. Now, all applications
scale up to 40 cores without saturation. Mean speedup with
all the optimizations is 33.7 times. On average, 91% of
the benchmark time is spent on the applications themselves.

196

Running time (QES+PSS+PRS, msec)
Benchmark Input data size (MB) 1-core 40-core

FilterBank 98 288,504 7,399
FMRadio 977 226,783 5,887
FFT2 14,648 228,613 6,610
TDE 14,832 507,566 16,835
MergeSort 3,815 243,072 10,569
RG 3,000 220,890 6,471
SRAD 5,000 199,018 5,416

TABLE III: Benchmark input data size and running time in
1-core and 40-core

Table III shows the input data sizes and the absolute running
times in milliseconds on 1-core and 40-core.

In summary, random work stealing, which is widely used,
reveals the scalability limitations due to its blindness to the
producer-consumer relationships. Our experimental results on
QES and PSS show that exploiting the producer-consumer
relationships for making scheduling decisions is critically im-
portant for achieving high scalability. Especially, PSS is quite
effective to avoid the thundering-herd problem by scheduling
speculatively before a data queue becomes completely full or
empty. Finally, PRS is effective to mitigate fine-grain load-
imbalance. Our execution breakdown shows that the DANBI
runtime imposes very little overhead: on average 3.9% for
queue operation, 2.8% for the scheduler, 1.5% for stall, and
1.1% for the OS kernel.

C. Footprint and Performance Sensitivity of Queue Size
One of the interesting aspects in the DANBI runtime is the

footprint and its relationship to performance. The footprint of
a DANBI application is determined by the developer’s settings
for the data queue size. In addition, the DANBI runtime
dynamically creates and destroys user-level threads as needed.
Therefore, the thread stack is a variable part in the DANBI
footprint. We evaluate the average and maximum number of
threads on 40 cores. Since 40 native threads are running
on 40 cores, the minimum number of user-level threads is
40. As Figure 6 shows, our thread life-cycle management
mechanism incorporated with QES tightly manages the number
of user-level threads: 43 threads on average and 83 threads at
maximum.

Our QES and PSS policy make scheduling decisions based
on how much each queue is filled. Therefore, the data queue
size set by the developer could affect the scheduling decision.
To evaluate how much the queue size affects performance on
40 cores, we vary the queue size to 1/3x, 2/3x, 2x, and 3x
of the queue size in Section IV-B. Figure 7 shows that there
are only marginal performance variations, below 2%. It shows
that our scheduling mechanism can dynamically adapt to queue
size by changing the degree of data and pipeline parallelism.

D. Comparison with Other Parallel Programming Runtimes
In this section, we compare performance and scalability of

the DANBI runtime with the state-of-the-art parallel program-
ming runtimes. For fair comparison, we modified the original

0

20

40

60

80

100

Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

FilterBank FMRadio FFT2 TDE MergeSort RG SRAD

of

 u
se

r-
le

ve
l t

hr
ea

ds

Fig. 6: Average and maximum number of user-level threads

-2%

-1%

0%

1%

2%

1/
3x

2/
3x 2x 3x

1/
3x

2/
3x 2x 3x

1/
3x

2/
3x 2x 3x

1/
3x

2/
3x 2x 3x

1/
3x

2/
3x 2x 3x

1/
3x

2/
3x 2x 3x

1/
3x

2/
3x 2x 3x

FilterBank FMRadio FFT2 TDE MergeSort RG SRAD

Pe
rf

or
m

an
ce

Im

pr
ov

em
en

t

Fig. 7: Performance variation under different queue sizes

benchmarks to perform I/O operations on memory rather than
files, and ran the benchmarks on the latest available versions of
the original runtimes. Figure 8a shows the speedup of the other
runtimes normalized to the DANBI single core performance in
Figure 3d. Figure 8b shows the execution time breakdown in
three categories: application, parallel runtime, and OS kernel.
In DANBI, the runtime means the sum of the queue operation,
scheduler, and stall time in Figure 4. The breakdown of the
other runtime is obtained by analyzing the collected profiles
from Linux perf record command [34].

StreamIt: The original version of FilterBank, FMRadio,
FFT2, and TDE ran on the latest StreamIt runtime obtained
from the code repository [35]. We used StreamIt SMP back-
end [1], which is optimized for shared-memory multicore
systems, with the highest optimization level (-O2). StreamIt
compiler generates statically scheduled multi-threaded C codes
with barrier synchronization, and the generated C codes are
compiled with GCC 4.6.3. Mean speedup of the four ap-
plications is 12.8 times. Performance of FFT2 starts to be
saturated at 5 cores, and that of TDE is saturated at 15
cores. There is the possibility that the static scheduling without
runtime scheduling overhead could outperform our dynamic
scheduling. However, since the performance of modern many-
core systems are difficult to estimate, the suboptimal static
schedules lead to the large stalls and the limited scalability.
As Figure 8b shows, a large portion of the execution time,
55% on average, is spent in the runtime which is the barrier
synchronization overhead waiting for termination of all threads
at each steady state schedule. Figure 1 shows that as the thread
count increases, barrier synchronization overhead also rapidly
increases, while scalability rapidly decreases. It reveals the
limitations of static scheduling. As a result, while our dy-
namic scheduling has additional overhead to make scheduling

197

(a) Scalability

0%

20%

40%

60%

80%

100%

D
A

N
B

I

St
re

am
It

D
A

N
B

I

St
re

am
It

D
A

N
B

I

St
re

am
It

D
A

N
B

I

St
re

am
It

D
A

N
B

I

C
ilk

D
A

N
B

I

O
p

en
C

L

D
A

N
B

I

O
p

en
C

L

FilterBank FMRadio FFT2 TDE MergeSort RG SRAD

Ex
ec

. T
im

e
Br

ea
kd

ow
n

OS Kernel

Runtime

Application

(b) Execution time breakdown on 40 cores

Fig. 8: Scalability and execution time breakdown of other parallel runtimes. The relative speedup is normalized to the DANBI
single core performance in Figure 3d and the execution time break time is classified into Application, Runtime, and OS Kernel.
The runtime portion of DANBI is the sum of the queue operation, scheduler, and stall time in Figure 4.

decisions, it outperforms the static scheduling. For the same
applications, the DANBI runtime achieves 35.6 times mean
speedup while spending only 2.3% of the execution time for
the runtime.

Cilk: We ran the original version of MergeSort from
MIT [30] on the latest Intel Cilk Plus runtime [36]. Due to
changes in Cilk keywords, we made minor modifications. In
Figure 8a, the performance improvement is saturated at 10
cores and the performance begins to degrade at 20 cores. The
fraction of the OS kernel in the execution time increases non-
linearly as thread count increases: for 10, 20, 30, and 40 cores,
the OS kernel takes 57.7%, 72.8%, 83.1%, and 88.7% of exe-
cution time, respectively. Contention on work stealing causes
disproportional growth of OS kernel time, mostly in the OS
scheduler, because Cilk scheduler calls pthread_yield()
when it fails to acquire a lock on a victim’s work queue.
In our experiments, the yielding count soars as the thread
count increases: 1.1 million, 5.5 million, 18.1 million, 34.1
million, and 49.6 million for 5, 10, 20, 30, and 40 cores,
respectively. Simply replacing yielding with spinning does not
help: spinning shows similar scalability because the overhead
in the OS scheduler simply moves to the Cilk scheduler. It
clearly shows the limitations of blind random stealing in Cilk
which does not exploit the producer-consumer relationships.
In a small number of cores, Cilk outperforms the DANBI
runtime, because the DANBI version of MergeSort requires
one additional memory copy in the Spilt kernel, which splits
two sorted arrays into smaller chunks for a parallel merge.
On 40 cores, DANBI significantly outperforms Cilk: 23 times
speedup for DANBI and 11.5 times speedup for Cilk.

OpenCL: The applications originated from OpenCL, RG
and SRAD, ran on the latest Intel OpenCL runtime [37]. Since
the Intel OpenCL runtime does not provide the functionality to
change the number of involved threads, we changed the BIOS
configuration of our test machine to change the number of
cores. All allowable BIOS configurations are 4, 8, 16, 24, 32,
and 40 cores. Figure 8a shows that the performance improve-
ment of SRAD is saturated at 24 cores and the performance
of RG starts to degrade at 16 cores. As core count increases,

the fraction of runtime rapidly increases: in the case of SRAD,
runtime takes 6.7%, 21.1%, and 38.3% of execution time on 8,
24, and 40 cores, respectively. We found that more than 50%
of the runtime was spent in the work stealing scheduler of
TBB [4], which is an underlying framework of Intel OpenCL.
On 40 cores, OpenCL versions of RG and SRAD achieve 14.6
and 14.1 times speedup, respectively, while DANBI achieves
a significantly higher speedup: 34.1 and 36.8 times speedup
with a significantly lower runtime overhead.

In summary, we found that achieving scalability in many-
core systems – 40 cores in our experiment – is very challenging
even in state-of-the-art parallel runtimes. StreamIt, Cilk, and
OpenCL perform well up to approximately 15 cores, but they
begin to struggle with more than 20 cores. Moreover, bulk-
synchronous style execution [38] – barrier synchronization
between the steady state schedule in StreamIt, synchronization
on returning from recursion in Cilk, and synchronization be-
tween kernels in OpenCL – shows larger scalability limitations
as the core count increases. In contrast, the dynamic load-
balancing scheduling of the DANBI runtime enables nearly
linear scalable performance speedup, at least up to 40 cores.

V. RELATED WORK

Data-flow oriented stream processing has received a lot
of interest in the context of both many-core systems and
distributed systems. Here we present a selection of papers most
related to our work.

Static Scheduling in Many-core Systems: StreamIt [1] is
a representative stream programming model and runtime. It
follows the synchronous data flow (SDF) model [39] which
supports only regular applications with static input/output
rates. Scheduling is generated offline by the compiler based on
the estimation of the execution time and the communication
requirement of each kernel [1], [8], [29]. However, as shown in
Figure 1, it significantly suffers from load imbalance when an
application has data-dependent control flows or the architecture
has performance variability (e.g. cache miss, memory location,
SMT, and DVFS). Moreover, since it iteratively executes the

198

steady state schedule in a bulk-synchronous way with barrier
synchronization, the load imbalance tends to more severely
affect scalability with a larger number of cores.

Dynamic Scheduling in Many-core Systems: SEDA [40]
dynamically adjusts the number of threads for a stage and
the number of events processed by each iteration. However,
the scope of dynamic scheduling is limited to data paral-
lelism. Flexible Filters [16] identifies bottleneck filters through
profiling of the application, and accelerates the execution of
the bottleneck filters by using the backpressure mechanism.
SKIR [11] proposes a dynamic scheduling mechanism based
on work stealing with the backpressure mechanism, but it
fails to achieve scalability in more than 24 cores because of
excessive work stealing overhead. Though these two works
provide load balancing on stream programs, they support
scheduling only on regular stream programs. GRAMPS [6],
[18] is the first runtime that supports dynamic scheduling of
irregular stream programs. It performs dynamic load balancing
based on work stealing with a per-kernel work queue and
a backpressure mechanism. However, it does not support
data ordering between parallel stages because of significant
queue manipulation overhead. It limits expressive power in
parallel kernels and imposes additional overhead for reordering
the data at the last sequential kernel. Moreover, GRAMPS
does not support peek operation, which is commonly used
for sliding window computation in many realistic stream
applications [19], and their experimental environments are
relatively limited to: an idealized simulator with no scheduling
overheads [6] and a 12-core, 24-thread machine [18]. The flow
graph feature in TBB [4] and the Bobox system [17] support
dynamic scheduling of cyclic pipelines. However, the flow
graph also does not support peek operation and the Bobox
system does not support data parallel kernel.

Dynamic Scheduling in Distributed Systems: Elastic Op-
erator [14] iteratively adjusts the level of data parallelism based
on peek throughput and measured throughput. However, it is
limited to dynamically changing the degree of data parallelism.
Borealis [12] provides sophisticated local, neighborhood and
global scheduling optimizations, but it assumes all components
are stateless. ACES [13] first optimizes schedules offline, and
then dynamically adapts the schedules based on buffer occu-
pancy and processing rates. However, it does not support the
cyclic pipeline. Moreover, it is based on the brittle assumption
that processing rate is proportional to CPU utilization.

Topology Unaware Work Stealing: Work stealing is a
widely used load balancing technique in many parallel run-
times due to its fine-grained nature [3], [4], [41], [42]. It
performs well for programs with simple dependencies (e.g.
fork-join), but it works poorly on complex pipelines as it does
not exploit producer-consumer relationships.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced the DANBI programming model
and proposed its dynamic scheduling mechanism for load
balancing. The DANBI programming model extends stream
programming models to support irregular programs. Our load-
balancing scheduler exploits producer-consumer relationships

in a stream program to generate scalable schedules. More-
over, we also presented two probabilistic scheduling policies
which effectively avoid the thundering-herd problem and dy-
namically adapt to load imbalance. It surpasses prior static
stream scheduling approaches, which are vulnerable to load
imbalance, and prior dynamic stream scheduling approaches,
which have many restrictions on supported program types,
on the scope of dynamic scheduling, and on preserving data
ordering. Our experimental results show that DANBI achieves
an almost linear speedup up to 40 cores, while other state-of-
the-art parallel runtimes begin to have difficulty at around 15
or 20 cores. On 40 cores, DANBI outperforms StreamIt by 2.8
times, Cilk by 2 times, and Intel OpenCL by 2.5 times.

There are many avenues for future work. The design goal
of our current scheduling schemes is to minimize CPU stalls
by using dynamic load balancing. However, by taking care
of data locality such as NUMA and cache locality, we could
additionally improve the performance. Next, we plan to ex-
tend the DANBI programming model and the runtime to
heterogeneous computing environments, such as GPGPUs and
Xeon Phi coprocessors. We expect that our localized memory
access and array based queue will enable DANBI to be easily
portable to other architectures with various memory models.
Finally, we will extend our work to distributed computing
environments. Our scheduling mechanism will be suitable even
in distributed environments, since scheduling decisions are
made in a distributed manner with no centralized control. To
this end, we will extend our runtime to support conceptually
unbounded data queues with a bounded memory footprint.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their feedback
and comments, which have substantially improved the con-
tent and presentation of this paper. This research was sup-
ported by Next-Generation Information Computing Develop-
ment Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education, Science and
Technology (2012-0006423).

REFERENCES

[1] M. I. Gordon, “Compiler techniques for scalable performance of stream
programs on multicore architectures,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2010.

[2] Khronos OpenCL Working Group, “The OpenCL Specification Version
1.1,” http://www.khronos.org/opencl, 2011.

[3] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and
implementation, ser. PLDI ’98, 1998, pp. 212–223.

[4] Intel TBB, http://software.intel.com/en-us/intel-tbb/.
[5] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,

R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui, “The tao of parallelism in algorithms,” in
Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, ser. PLDI ’11, 2011, pp. 12–25.

[6] J. Sugerman, K. Fatahalian, S. Boulos, K. Akeley, and P. Hanrahan,
“GRAMPS: A programming model for graphics pipelines,” ACM Trans.
Graph., vol. 28, no. 1, pp. 4:1–4:11, Feb. 2009.

199

http://www.khronos.org/opencl
http://software.intel.com/en-us/intel-tbb/

[7] S. Tzeng, A. Patney, and J. D. Owens, “Task management for irregular-
parallel workloads on the GPU,” in Proceedings of the Conference on
High Performance Graphics, ser. HPG ’10, 2010, pp. 29–37.

[8] M. Kudlur and S. Mahlke, “Orchestrating the execution of stream
programs on multicore platforms,” in Proceedings of the 2008 ACM
SIGPLAN conference on Programming language design and implemen-
tation, ser. PLDI ’08, 2008, pp. 114–124.

[9] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and
S. Mahlke, “Flextream: Adaptive Compilation of Streaming Applica-
tions for Heterogeneous Architectures,” in Proceedings of the 2009 18th
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’09, 2009, pp. 214–223.

[10] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke,
“Sponge: portable stream programming on graphics engines,” in Pro-
ceedings of the sixteenth international conference on Architectural sup-
port for programming languages and operating systems, ser. ASPLOS
XVI, 2011, pp. 381–392.

[11] J. M. Fifield, “Generating, Optimizing, and Scheduling a Compiler
Level Representation of Stream Parallelism,” Ph.D. dissertation, Uni-
versity of Colorado, 2011.

[12] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang,
W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik, “The design of the borealis stream processing engine,”
in CIDR, 2005, pp. 277–289.

[13] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure, “Adaptive
Control of Extreme-scale Stream Processing Systems,” in Distributed
Computing Systems, 2006. ICDCS 2006. 26th IEEE International Con-
ference on, 2006, p. 71.

[14] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu, “Elastic
scaling of data parallel operators in stream processing,” in Proceedings
of the 2009 IEEE International Symposium on Parallel&Distributed
Processing, ser. IPDPS ’09, 2009, pp. 1 –12.

[15] G. Hager, G. Jost, R. Rabenseifner, and J. Treibig, “Performance-
oriented programming on multicore-based Clusters with MPI, OpenMP,
and hybrid MPI/OpenMP,” http://blogs.fau.de/hager/tutorials/isc12/,
2012.

[16] R. L. Collins and L. P. Carloni, “Flexible filters: load balancing through
backpressure for stream programs,” in Proceedings of the seventh ACM
international conference on Embedded software, ser. EMSOFT ’09,
2009, pp. 205–214.

[17] D. Bednárek, J. Dokulil, J. Yaghob, and F. Zavoral, “The bobox project
parallelization framework and server for data processing,” Charles
University in Prague, Technical Report, vol. 1, p. 2011, 2011.

[18] D. Sanchez, D. Lo, R. M. Yoo, J. Sugerman, and C. Kozyrakis, “Dy-
namic Fine-Grain Scheduling of Pipeline Parallelism,” in Proceedings
of the 2011 International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’11, 2011, pp. 22–32.

[19] W. Thies and S. Amarasinghe, “An empirical characterization of stream
programs and its implications for language and compiler design,” in
Proceedings of the 19th international conference on Parallel architec-
tures and compilation techniques, ser. PACT ’10, 2010, pp. 365–376.

[20] S. Schneider, M. Hirzel, B. Gedik, and K.-L. Wu, “Auto-parallelizing
stateful distributed streaming applications,” in Proceedings of the 21st
international conference on Parallel architectures and compilation
techniques, ser. PACT ’12, 2012, pp. 53–64.

[21] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
Stream Computing Platform,” in Data Mining Workshops (ICDMW),
2010 IEEE International Conference on, 2010, pp. 170–177.

[22] “Storm,” http://storm-project.net/ .

[23] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich, “An analysis of Linux scalability to many
cores,” in Proceedings of the 9th USENIX conference on Operating
systems design and implementation, ser. OSDI’10, 2010, pp. 1–8.

[24] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich, “Non-
scalable locks are dangerous,” in Proceedings of the Linux Symposium,
2012.

[25] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable syn-
chronization on shared-memory multiprocessors,” ACM Trans. Comput.
Syst., vol. 9, no. 1, pp. 21–65, Feb. 1991.

[26] T. E. Anderson, “The Performance of Spin Lock Alternatives for
Shared-Memory Multiprocessors,” IEEE Trans. Parallel Distrib. Syst.,
vol. 1, no. 1, pp. 6–16, Jan. 1990.

[27] G. Granunke and S. Thakkar, “Synchronization Algorithms for Shared-
Memory Multiprocessors,” Computer, vol. 23, no. 6, pp. 60–69, Jun.
1990.

[28] L. Soares and M. Stumm, “FlexSC: flexible system call scheduling with
exception-less system calls,” in Proceedings of the 9th USENIX confer-
ence on Operating systems design and implementation, ser. OSDI’10,
2010, pp. 1–8.

[29] J. Park and W. J. Dally, “Buffer-space efficient and deadlock-free
scheduling of stream applications on multi-core architectures,” in Pro-
ceedings of the 22nd ACM symposium on Parallelism in algorithms and
architectures, ser. SPAA ’10, 2010, pp. 1–10.

[30] MIT CSAIL Supertech Research Group, “The Cilk Project,”
http://supertech.csail.mit.edu/cilk/.

[31] S. G. Akl and N. Santoro, “Optimal parallel merging and sorting without
memory conflicts,” IEEE Trans. Comput., vol. 36, no. 11, pp. 1367–
1369, Nov. 1987.

[32] NVidia, “NVIDIA OpenCL SDK Code Samples,”
http://tinyurl.com/ayo8brs.

[33] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Workload Characterization, 2009. IISWC 2009. IEEE
International Symposium on, 2009, pp. 44–54.

[34] “perf: Linux profiling with performance counters,”
https://perf.wiki.kernel.org/ .

[35] “StreamIt SVN,” https://svn.csail.mit.edu/streamit/, Accessed 1 Nov.
2012.

[36] Intel Cilk Plus, http://software.intel.com/en-us/intel-cilk-plus/.
[37] Intel OpenCL SDK, http://software.intel.com/en-us/vcsource/tools/opencl-sdk/ .
[38] L. G. Valiant, “A bridging model for parallel computation,” Commun.

ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990.
[39] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of

the IEEE, vol. 75, no. 9, pp. 1235 – 1245, Sept. 1987.
[40] M. Welsh, D. Culler, and E. Brewer, “SEDA: an architecture for well-

conditioned, scalable internet services,” in Proceedings of the eighteenth
ACM symposium on Operating systems principles, ser. SOSP ’01, 2001,
pp. 230–243.

[41] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, ser. OOPSLA ’05, 2005, pp. 519–
538.

[42] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, and
T. Wen, “Solving Large, Irregular Graph Problems Using Adaptive
Work-Stealing,” in Parallel Processing, 2008. ICPP ’08. 37th Inter-
national Conference on, 2008, pp. 536–545.

200

http://blogs.fau.de/hager/tutorials/isc12/
http://storm-project.net/
http://supertech.csail.mit.edu/cilk/
http://tinyurl.com/ayo8brs
https://perf.wiki.kernel.org/
https://svn.csail.mit.edu/streamit/
http://software.intel.com/en-us/intel-cilk-plus/
http://software.intel.com/en-us/vcsource/tools/opencl-sdk/

	Introduction
	The DANBI Programming Model
	The DANBI Runtime for Many-Core Systems
	Dynamic Load-Balancing Scheduling
	Determining the Initial Schedule
	Queue Event-Based Scheduling (QES)
	Probabilistic Speculative Scheduling (PSS)
	Probabilistic Random Scheduling (PRS)
	Terminating a DANBI program

	Evaluation
	Benchmark Suite
	Scalability of the DANBI Runtime
	Footprint and Performance Sensitivity of Queue Size
	Comparison with Other Parallel Programming Runtimes

	Related Work
	Conclusion and Future Work
	References

