
Exploiting Kernel Races
Through

Taming Thread Interleaving
Yoochan Lee, Byoungyoung Lee, Chanwoo Min

Seoul National University, Virginia Tech

#BHUSA @BLACKHATEVENTS

#BHUSA @BLACKHATEVENTS

Summary

• Background on races • Classification on races
• Unexploitable races

• New technique turning
unexploitable races to
exploitable races

#BHUSA @BLACKHATEVENTS

Race condition is an increasing attack vector

• Razzer, IEEE S&P 2019, found more than 30 race bugs.

• KCSAN, developed by Google 2019, found more than 300 race bugs.

30 bugs

UAF
15 bugs

OOB

7 bugs

Race

143 bugs

UAF
111 bugs

OOB

67 bugs

Uninit

104 bugs

UAF
81 bugs

Race

59 bugs

OOB

of fixed bugs that Syzkaller found in 2017 # of fixed bugs that Syzkaller found in 2018 # of fixed bugs that Syzkaller found in 2019

3

#BHUSA @BLACKHATEVENTS

Background : Race condition

• Accessing the same memory location from two processors

è Execution results are different depending on the access order.

4

Instructions that
access the same memoryA B

Pair of race instruction Access Order

A B>> è Result X

B A>> è Result Y

Result can be a
value stored in memory

or
a value

read by read instruction

Core 1 Core 2

A

B

current
execution

#BHUSA @BLACKHATEVENTS

Background : Race Condition Vulnerability

Race Condition
Vulnerability Race Condition= + Memory Corruption

Race instruction pair A

Race instruction pair B

.

.

.

Overflow

Use-After-Free

.

.

.

5

#BHUSA @BLACKHATEVENTS

Background : to trigger Race Condition Vulnerability

if , then memory corruption occurs.A B C

Brute forcing :
Try until success

6

#BHUSA @BLACKHATEVENTS

Background : Exploitability of Race Condition Vulnerability

Exploitable
Races?

A very specific
memory access order= +

Availability of
Memory Corruption

7

A B(e.g., if >> >> C , then)

#BHUSA @BLACKHATEVENTS

Classification of Race Condition Vulnerability

8

Race Condition Vulnerability

Multi Variable
Race Condition

Race instruction pair 1 for M1

Race instruction pair 2 for M2

…

Single Variable
Race Condition

Race instruction pair 1 for M1

Race instruction pair 2 for M1

… Single variable Multi variable

#BHUSA @BLACKHATEVENTS

Single-variable Race Condition

Pair
Core 2Core 1

A

B

C
Pair

Time
Window

Control Flow Dependency

Data Flow Dependency

do_ip_setsockopt()
{

…

inet->hdrincl = 0;

…
}

raw_sendmsg()
{

…
if (! inet->hdrincl) {

// initialize rfv variable
rfv.msg = msg;
…

}
if (! inet->hdrincl) {

memcpy(to, rfv->hdr.c, …);
}
…

}

A

B

C

Case study : CVE-2017-17712

A Bif >> >> C , then uninitialized buffer use occurs.

inet->hdrincl is 1

inet->hdrincl is 0

9

#BHUSA @BLACKHATEVENTS

Exploitability of Single-variable Race

• Brute-forcing would somehow trigger the race

è if B can be executed within the time window

• The smaller the time window is, the lower the probability of successful races.

Order
violation

Core 2Core 1

A

B

C
Order
violation

Time
Window

10

#BHUSA @BLACKHATEVENTS

Multi-variable Race Condition

Control flow Dependency

Data flow Dependency

Core 2Core 1

A

B

D

Time
Window

x C

Time
Window

y

Instructions that
access the M1A B

Pair of race instruction

C D Instructions that
access the M2

Pair of race instruction

11

A Bif >> && ,C D>>

then memory corruption occurs.

#BHUSA @BLACKHATEVENTS

Multi-variable Race Condition

12

Multi-variable Race Condition

Tx ≤ Ty
Non-inclusive Multi-variable Race

Core 2Core 1

Tx Ty
D

A

C

B
Inst pair

to access M1

Inst pair
to access M2

Tx > Ty
Inclusive Multi-variable Race

Inst pair
to access M1

Core 2Core 1

A

B

D
Inst pair

to access M2

Tx

C
Ty

#BHUSA @BLACKHATEVENTS

Exploitability of Inclusive Multi-variable Race

• Brute-force somehow works.

• The more similar the two time windows are, the lower the probability that a race will occur.

Race Pair

Core 2Core 1

A

B

DRace Pair

Tx

C
Ty

13

#BHUSA @BLACKHATEVENTS

Problem : Exploitability of Non-inclusive Race

• Brute-force never works.

• impossible to execute with the order of .

Even if,
A >> B is succeed,

C >> D will be failed

Tx

Ty

Core 2Core 1

A

D
B

C

binder_alloc_new_buf_locked()
{

if (alloc->vma == NULL) return ERR;

mmget_not_zero(alloc->vma_vm_mm));

}

binder_alloc_mmap_handler()
{

// initialize vma
alloc->vma = vma;

alloc->vma_vm_mm =
vma->vm_mm;

}

Case study : Patch #987393

Tx = 18 cycles

D

A

C

B

Ty = 2250 cycles

if , then uninitialized buffer use occurs in .CA B>> && C D>>

14

A B>> && C D>>

#BHUSA @BLACKHATEVENTS

Problem : Exploitability of Non-inclusive Race

Even if,
A >> B is succeed,

C >> D will be failed

Tx

Ty

Core 2Core 1

A

D
B

C

15

CVE-2017-15265

CVE-2019-1999

CVE-2019-2025

CVE-2019-6974

#1035566

#987393

#759959

.

.

.

Tx

35

150

50

18

1,153

18

120

Ty

450

1,800

600

1,210

13,121

2,250

730

Non-inclusive race vulnerabilities
found in linux kernel

• Brute-force never works.

• impossible to execute with the order of .A B>> && C D>>

#BHUSA @BLACKHATEVENTS

Previous method : Using Different Core Latency

race_function1():

A D
Core 1
1.6 Ghz

Core 2
2.5 Ghz

Execution Order : A B>> D>>C&

• e.g., Qualcomm Snapdragon 845 4x 2.5GHz, 4x 1.6GHz

16

race_function2():

B C

#BHUSA @BLACKHATEVENTS

race_function2():

B C

Previous method : Using Different Core Latency

race_function1():

A D
Core 1
1.6 Ghz

Core 2
2.5 Ghz

Execution Order : A B>> D>>C&

• e.g., Qualcomm Snapdragon 845 4x 2.5GHz, 4x 1.6GHz

17

#BHUSA @BLACKHATEVENTS

Limitations of Use Different Core Latency

• Must use the CPU that latency between the cores are different.

• Not applicable to vulnerabilities with large time window differences

CPU dependency

CPU

18

#BHUSA @BLACKHATEVENTS

Previous Approach : Using scheduler (CONFIG_PREEMPT)
Execution Order : A B>> D>>C&

Wait queue :

Core 1

Core 2

Core 0

current
execution

Jann Horn, Linux Security Summit EU 2019,
"Exploiting Race Conditions Using the Scheduler”

è sched_setaffinity()

19

#BHUSA @BLACKHATEVENTS

Previous Approach : Using scheduler (CONFIG_PREEMPT)

race_function2():

B C

sched_setaffinity(Core 1, self):

R

Execution Order : A

race_function1():

A D

Wait queue :

Core 1

Core 2

Core 0

current
execution

20

Hey, you need to
reschedule

#BHUSA @BLACKHATEVENTS

Previous Approach : Using scheduler (CONFIG_PREEMPT)

race_function2():

B C

sched_setaffinity(Core 1, self):

R

Execution Order : A B>> C&

race_function1():

DWait queue :

Core 1

Core 2

Core 0

current
execution

21

#BHUSA @BLACKHATEVENTS

race_function1():

A D

Previous Approach : Using scheduler (CONFIG_PREEMPT)
Execution Order : A B>> D>>C&

Wait queue :

Core 1

Core 2

Core 0

current
execution

22

#BHUSA @BLACKHATEVENTS

Limitation of Using scheduler

• Can be used when COFIG_PREEMPT option is applied.

• Linux uses CONFIG_PREEMPT_VOLUTARY option by default.

Configuration dependency

23

#BHUSA @BLACKHATEVENTS

Each of methods has obvious limitations

• All previous methods are hard to be used in general.

• We need a new method that extends the time window.

CPU dependency

CPU

Configuration dependency

24

#BHUSA @BLACKHATEVENTS

How to extend the time window?

1. Stop the core

Core 1

A D

2. Degrade the performance

Core 1

25

#BHUSA @BLACKHATEVENTS

Attacker

ExpRace

• The key idea of ExpRace is to keep raising interrupts to indirectly alter kernel thread’s

interleaving.

Core 1

Performance :
FastSlow

A

D

Interrupt handler!
Interrupt handler!

Interrupt handler!

• Inter-processor interrupt
• Hardware Interrupt

Bullets

26

#BHUSA @BLACKHATEVENTS

ExpRace : How to send IPI & IRQ with user priv

Attacker
(User Priv)

user_function()
{

syscall();
}

User mode

syscall()
{

send_IPI();
}

Kernel mode Core 1

Send IPI

to core1

Attacker
(User Priv)

user_function()
{

syscall();
}

User mode

syscall()
{

send_REQ();
}

Kernel mode Core 1

Send IRQ

to core1

Hardware device

Request

to device

27

#BHUSA @BLACKHATEVENTS

ExpRace : TLB Shootdown

Core 1 Core 2

~ ~ ~

0xABC0 0xABD0 0xABE0

cache

~ ~ ~

0xABC0 0xABD0 0xABE0

cache
munmap(0xABD0) IPI_handler()?

• Modern OSs implement a TLB shootdown mechanism to ensure that TLB entries are
synchronized across different cores.

• Syscalls that either modify the permission of the page (e.g., mprotect()) or unmap (e.g.,
munmap()) the page use IPI for TLB shootdown.

IPI

Flush 0xABD0

28

#BHUSA @BLACKHATEVENTS

ExpRace : IPI Environment setting

Ty + α

IPI_send
(core 1 and core 2)

mm α

Process C
(Core 0)

Process A
(Core 1)

Process B
(Core 2)

Tx + α
Interrupt
handlerα

Interrupt
handler α

B

C

A

D

If 3 processes have same mm

IPI_send
(core 1)

mm α mm β

A
B

C

Ty

Process C
(Core 0)

Process A
(Core 1)

Process B
(Core 2)

D

Tx + α Interrupt
handlerα

If process A and C have same mm,
and B have different mm

29

#BHUSA @BLACKHATEVENTS

ExpRace : Hardware Interrupt Environment Setting

1. Check irq’s core affinity.
(In our environment, ethernet device (IRQ 122) have affinity to core 11)

2. Pin the thread to corresponding core using sched_setaffinity().

Process A
(Core 11)

Process B
(Core 2)

A
B

C

D

Process C
(Core 0)

1. connect()

Ethernet
device

D

Tx + α ISRα

4. IRQ
2. req

3. res

30

#BHUSA @BLACKHATEVENTS

ExpRace : How many cycles are extended?

A
B

C

D

Ty

Core 1 Core 2

IPI
handler

1,500 ~ 20,000 cycles

A
B

C

D

Ty

Core 1 Core 2

ISR
handler

About
15,000 cycles

TLB Shootdown Hardware Interrupt

31

#BHUSA @BLACKHATEVENTS

ExpRace : Advanced Technique

• IPI and IRQ can be used simultaneously.

• The time window is extended up to 200,000 cycles

Process D
(Core 3)

1. connect()

Ethernet
device

IRQ
IPI_send
(core 1)

mm α mm β

Ty

Process C
(Core 0)

Process A
(Core 1)

Process B
(Core 2)

Tx + α

Interrupt
Handler

+
ISR

α

C

B

D

A

32

#BHUSA @BLACKHATEVENTS

Case Study : CVE-2017-15265

snd_seq_create_port()
{

…
port = kzalloc();
list_add_tail(&port->list, &p->list);

…

strlcpy(port->name, info->name,
sizeof(port->name));

}

A

Tx = 110 cycles

D

snd_seq_delete_port()
{

list_for_each_entry(… p->list)
{

if (p->addr.port == port) {
found = p;
…

}
}
…
kfree(found);

}
C

Ty = 450 cycles

Bz

A Bif >> && , then Use-After-Free Write occurs.C D>>

z
Problems to exploit

1. Non-inclusive Multi-variable Race

2. No time to reallocate

33

#BHUSA @BLACKHATEVENTS

Interrupt Handler

ExpRace can solve two problems at once

snd_seq_create_port()
{

…
port = kzalloc();
list_add_tail(&port->list, &p->list);

strlcpy(port->name, info->name,
sizeof(port->name));

}

A

Tx’ = 110 + 15000 cycles

D

snd_seq_delete_port()
{

list_for_each_entry(… p->list)
{

if (p->addr.port == port) {
found = p;
…

}
}
…
kfree(found);

}

syscall_for_reallocte()
{

kmalloc();
}

C

Ty = 450 cycles

B

A Bif >> && , then Use-After-Free Write occurs.C D>>

It takes about
3000 cycles

34

#BHUSA @BLACKHATEVENTS

Brief introduction about memory corruption exploit

• Spray struct file pointer using SCM_RIGHT

• Partially overwrite the pointer in reallocated structure for

kernel address leak.

• Use iovec structure for arbitrary memory write and read.

1st Use-After-Free Write

2nd Use-After-Free Write

3rd Use-After-Free Write

We totally trigger the vulnerability 3 times

Leak : struct file pointer

AAR : file->f_cred pointer

AAW : f_cred -> uid = 0

35

#BHUSA @BLACKHATEVENTS

DEMO

36

#BHUSA @BLACKHATEVENTS

Conclusion

• Introduced unexploitable race types.

• ExpRace can turn unexploitable races into exploitable races.

37

