
Fireworks: A Fast, Efficient, and Safe Serverless
Framework using VM-level post-JIT Snapshot

Wonseok Shin∗
SK Telecom

Wook-Hee Kim
Konkuk University

Changwoo Min
Virginia tech

Abstract
Serverless computing is a new paradigm that is rapidly gain-
ing popularity in Cloud computing. One unique property
in serverless computing is that the unit of deployment and
execution is a serverless function, which is much smaller
than a typical server program. Serverless computing intro-
duces a new pay-as-you-go billing model and provides a high
economic benefit from highly elastic resource provisioning.
However, serverless computing also brings new challenges
such as (1) long start-up times compared to relatively short
function execution times, (2) security risks from a highly con-
solidated environment, and (3) memory efficiency problems
from unpredictable function invocations. These problems
not only degrade performance but also lower the economic
benefits of Cloud providers.

To address these challenges without any compromises, we
propose a novel VM-level post-JIT snapshot approach and
develop a new serverless framework, Fireworks. Our key
idea is to synergistically leverage a virtual machine (VM)-
level snapshot with a language runtime-level just-in-time
(JIT) compilation in tandem. Fireworks leverages JITted
serverless function code to reduce both start-up time and
execution time of functions and improves memory efficiency
by sharing the JITted code. Also, Fireworks can provide a
high level of isolation by using a VM as a sandbox to exe-
cute a serverless function. Our evaluation results show that
Fireworks outperforms state-of-art serverless platforms by
20.6× and provides higher memory efficiency of up to 7.3×.

CCSConcepts: •Computer systems organization→Cloud
computing.

Keywords: serverless computing, start-up time, snapshot,
just-in-time compilation

∗This work was conducted while Wonseok Shin was at Virginia Tech.

EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9162-7/22/04.
https://doi.org/10.1145/3492321.3519581

ACM Reference Format:
Wonseok Shin,Wook-Hee Kim, andChangwooMin. 2022. Fireworks:
A Fast, Efficient, and Safe Serverless Framework using VM-level
post-JIT Snapshot. In Seventeenth European Conference on Computer

Systems (EuroSys ’22), April 5–8, 2022, RENNES, France. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3492321.3519581

1 Introduction
Serverless computing is a new paradigm in Cloud comput-
ing that is becoming increasingly popular [31]. It eliminates
the burden of administrating infrastructure and provides ex-
treme elasticity for resource provisioning without requiring
developer efforts. Moreover, it introduces a new pay-as-you-
go billing model [8] compared to the traditional Cloud com-
puting billing model, which is based on server uptime regard-
less of actual usage. Because of these advantages, most Cloud
providers already offer their own serverless computing ser-
vices, including Amazon Lambda [14], Microsoft Azure [42],
Google [23], and IBM Cloud Functions [28].
A serverless application consists of chains of serverless

functions, which are a unit of deployment and execution in
serverless computing. Each function is executed on a sand-
box (e.g., virtual machine, container) provided by a Cloud
provider. Most serverless applications are written in high-
level languages such as Node.js and Python so that server-
less platforms provide language runtimes to execute server-
less functions on top of a sandbox. For instance, in AWS
lambda [44], Node.js accounts for 53% and Python accounts
for 36%, so these two languages account for 89% of the total
serverless functions. Basically, a sandbox and runtime are
launched upon a user’s request (e.g., function call, trigger-
ing event). The resources allocated to the application are
determined by the number of functions corresponding to the
application and the load of each function.
Serverless computing has unique characteristics in con-

trast to traditional Cloud computing. First of all, the execu-
tion time of a serverless function is much shorter than in
traditional server programs. For example, in Microsoft Azure
Cloud, 50% of functions take less than 1 second on average
and function execution times are roughly at the same order
of magnitude as the cold start times [48]. Also, due to the in-
herent nature of serverless functions having short execution
times, Cloud providers aim to consolidate a large number
(e.g., thousands) of serverless functions in a single machine
to utilize hardware resources more efficiently.

663

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3492321.3519581
https://doi.org/10.1145/3492321.3519581
https://creativecommons.org/licenses/by/4.0/

EuroSys ’22, April 5–8, 2022, RENNES, France Wonseok Shin, Wook-Hee Kim, and Changwoo Min

These unique characteristics introduce the unique chal-
lenges in serverless computing [27]. The relatively short ex-
ecution time of a function implies that any overhead besides
function execution will impose a large overhead. Moreover,
such short execution times make efficient execution in lan-
guage runtime difficult because modern language runtimes
(e.g., Node.js, Python, and Java) leverage the runtime profile
of code to decide which functions should be just-in-time
(JIT) compiled. In particular, a serverless function’s start-up
time is one of the biggest overheads [19, 48]. It includes the
time needed to boot the VM, OS, and container, as well as
the time to load the language runtime and the application
code itself. Compared to a function’s execution time, which
often takes less than a second, the start-up time imposes
significant overhead. The loading time of the language run-
time and application itself impose significant overhead in
serverless applications, as most functions are written in an
interpreter language such as Node.js or Python. Besides en-
suring performance for serverless users, reducing start-up
time is important to Cloud providers for higher profitability
because the start-up time is not charged to users.
There have been recent research efforts to shorten long

start-up times in serverless computing. For example, Cloud-
flare Workers [33] uses lighter sandboxes – e.g., sharing a
language runtime – to reduce the start-up time. However,
lighter sandboxes fundamentally provide a weaker isolation
guarantee, increasing the security risk, especially in a highly
consolidated serverless environment [41].

Another approach is the warm pool-based approach, which
pre-launches a sandbox before a function is invoked [24, 58].
Pre-launched sandboxes can efficiently hide the start-up
time without compromising the isolation level. However,
pre-launched sandboxes take hardware resources and hinder
high consolidation on the host. This approach is especially
not efficient for non-popular functions. For example, a previ-
ous study [48] reports that only 18.6% of popular functions
are called more than once a minute. In other words, the warm
pool based approach is not effective for the other 81.4% of
functions.
Besides the challenge in shortening a functions start-up

time, the execution time penalty is also problematic, espe-
cially for interpreter languages, such as Node.js and Python.
Although just-in-time (JIT) compilation has been very suc-
cessful in improving performance, notably in long-running
server applications, it is known that JIT is not very beneficial
in serverless computing [16] for two main reasons. First, the
JIT compilation cost cannot be offset due to the functions
short execution time. Second, most serverless sandboxes are
configured to use a single CPU. This configuration forces
the JIT compilation to compete with the application’s actual
execution for CPU time. After all, JIT compilation not only
introduces performance unpredictability [39] but also often
incurs a significant slow down onto application execution.

For example, some data center applications spend up to 33%
of their time performing JIT compilation [38].
In this paper, we propose Fireworks, a new serverless

platform that offers extremely short start-up time and high
performance without compromising the security isolation
level or wasting hardware resources. We focus on interpreter
languages, especially Node.js and Python, in which the ma-
jority of serverless applications are written.

We propose a novel VM-level post-JIT snapshot. We found
that, if properly used, JIT has the potential to significantly
improve the performance of serverless applications. When
installing a serverless function, Fireworks creates a snap-
shot of a VM after a language runtime loads the serverless
function and finishes JIT compilation for the serverless func-
tion. Upon invoking the function, Fireworks resumes the
VM snapshot and executes the function with new arguments.
Thereby, the function is already loaded and JITted in the VM
snapshot, so we do not need to repeatedly pay the cost of:
booting a VM & OS, launching the language runtime, per-
forming application loading, or JIT compilation during func-
tion execution. Moreover, Fireworks shares the snapshots
of previously JITted functions among concurrent function in-
vocations in a copy-on-write (CoW) manner so Fireworks
can reduce memory consumption. The VM-level post-JIT
snapshot meets our goals in three aspects: (1) the highest
level of isolation by using a VM as a sandbox, (2) instant
start-up and fast execution by resuming a JITted snapshot,
and (3) less memory consumption by sharing the snapshot.

We make the following contributions in this paper:
• VM-level post-JIT Snapshot. We propose a novel VM-
level post-JIT snapshot for serverless functions written
in interpreter languages. Fireworks creates a VM-level
snapshot after loading and JITting a serverless function
upon installation. Then upon invoking the function, it
simply resumes the snapshot with new arguments.

• Serverless Framework. We develop a new serverless
framework named Fireworks based on an open-source
serverless platform, OpenWhisk [13], and a lightweight
hypervisor, Firecracker [5]. Fireworks analyzes a server-
less function written in Node.js or Python and annotates
it to trigger JIT compilation during installation. It then
creates a VM-level snapshot after finishing loading and
JITting the function. Finally, Fireworks resumes the snap-
shot when the function invocation takes new arguments
from the OpenWhisk framework.

• Evaluation. We evaluate Fireworks using two repre-
sentative serverless benchmarks: FaaSdom [40] for mi-
crobenchmarking and ServerlessBench [61] for real-world
applications. Our evaluation shows that Fireworks out-
performs state-of-the-art serverless computing frameworks
by up to 20.6× in performance and shows higher memory
efficiency up to 7.3×.
The rest of the paper is organized as follows. §2 introduces

the background and motivations of this work. §3 describes

664

Fireworks: A Fast, Efficient, and Safe Serverless Framework using VM-level post-JIT Snapshot EuroSys ’22, April 5–8, 2022, RENNES, France

Frontend

User
Interface

API Gateway

Cloud
Trigger

Co
nt

ro
lle

r

M
es

sa
ge

 B
us

Physical Machine
Operating System

Container
Runtime

Worker worker

Worker
Backend

Function main() {
 print(“hello”)
}

code

code

Figure 1. Overall architecture of a serverless platform.

the design of Fireworks in detail. §4 explains the implemen-
tation of Fireworks. §5 shows our evaluation results with
microbenchmarking based on FaaSdom and real-world work-
loads based on serverlessBench. §6 discusses limitations, §7
provides related work to Fireworks, and §8 concludes.

2 Background and Motivation
2.1 How a Serverless PlatformWorks
Figure 1 illustrates the typical architecture of a serverless
computing platform. The frontend consists of three com-
ponents: (1) user interface, (2) API gateway, and (3) Cloud
trigger. A user builds and deploys a serverless application
through a web-based user interface. When a user sends a
request to the serverless platform, the API gateway relays
the request to one of the backend servers, which execute the
requested function. When a registered event occurs – e.g.,
inserting a record into the DBMS or changing a file in Cloud
storage, the Cloud trigger invokes a function to execute. Af-
ter the controller processes the requests, the corresponding
messages are put in the message bus, which is the communi-
cation backbone of a serverless platform, passing a request
with arguments. The messages initiate a new runtime to be
created to execute the functions or deliver a request to one
of the existing runtimes, often called a worker running inside
a sandbox.

2.2 Characteristics of a Serverless Workload
Serverless applications show unique workload characteris-
tics, which sharply differentiate them from traditional server-
oriented Cloud workloads.
Short function execution time. The most prominent dif-
ference in serverless workloads is their short execution time.
The execution time of a function is remarkably shorter than
the lifetime of a worker. The average execution time of a
function is about a second [48]. Such a short function execu-
tion time makes their start-up time – the time from when
a function is invoked to when the function actually starts
executing – dominant in the end-to-end latency. When a
function is invoked, a serverless platform first launches a
sandbox (e.g., VM, container) and a language runtime (e.g.,
Node.js, Python) before loading the function. The start-up

time in this case – a so-called cold start – is often longer than
the function execution time. The current practice by Cloud
providers to mitigate this cold start is to defer termination
of the worker sandbox for a certain period, hoping another
request for the same function will be delivered. If that hap-
pens, the start-up time in this case – a so-called warm start

– will be much faster than a cold start. However, for many
applications, it is hard to predict when the next function
invocation will be delivered [48]. That is because in these
applications most functions are not frequently called. If a
new request is not delivered within a certain duration, the
serverless platform will terminate the sandbox as it wastes
hardware resources, especially memory.
High consolidation in a server. Such a short function ex-
ecution time allows a Cloud provider to consolidate a large
number of serverless functions in a server with low hardware
costs. However, such a highly consolidated environment is
vulnerable to security risks. In particular, serverless plat-
forms often use a sandbox with a lower isolation level (e.g.,
container over VM) to reduce the start-up penalty [13, 25,
33, 37]. Since sandboxes with a lower isolation level share
more resources between sandboxes, they are exposed to high
security risks. On the other hand, sandboxes with a high iso-
lation level (e.g., a microVM in Firecracker hypervisor [5])
incur more overhead, such as longer cold start-up times.
Memory efficiency. Memory is the most scarce hardware
resource in serverless computing because memory is needed
to maintain sandboxes waiting for a request, and it is the
main limiting factor for consolidation [59].

2.3 Optimizing Serverless Platforms
We compare state-of-the-art serverless platforms in three cru-
cial aspects – (1) isolation, (2) performance, and (3) memory
efficiency – as summarized in Table 1. Then, we introduce
each approach in more detail.

Firecracker [5] is a lightweight virtual machine monitor
(VMM) developed by Amazon and optimized for serverless
applications. It provides a high isolation level by executing
a serverless function in a VM. It also provides a VM-level
snapshot so that the VM-level snapshot can be resumed and
shared by multiple VM instances.

OpenWhisk [13] is a open-source container-based server-
less platform deployed in IBM Cloud. While a Linux con-
tainer is more lightweight than a VM, it provides a lower iso-
lation guarantee because containers share kernel resources
in the same host [10, 37].

gVisor [25] is a container-based sandbox providing a
strong security guarantee. A previous study reports that
containers allow the most system calls (e.g., 306 out of 350
Linux system calls) [10], such that exposed system calls can
be exploited for security attacks. gVisor addresses this vul-
nerability by intercepting a container’s access to the Linux
kernel and limits some system calls to improve security [30].

665

EuroSys ’22, April 5–8, 2022, RENNES, France Wonseok Shin, Wook-Hee Kim, and Changwoo Min

Serverless Platform Isolation Performance Memory Efficiency

Firecracker (Amazon) [5] High (VM) Medium (snapshot) High (snapshot)
OpenWhisk (IBM) [13] Medium (container) Low (no optimization) Low (pre-launching)
gVisor (Google) [25] Medium (container) Medium (snapshot) High (snapshot)
Cloudflare Workers [33] Low (runtime) High (pre-launching) High (process sharing)
Catalyzer [19] Med (container) High (pre-launching) High (process sharing)

Fireworks High (VM) Extreme (snapshot+JIT) Extreme (snapshot+JIT)

Table 1. Design comparison of serverless platforms.

Specifically, Sentry and Gofer in gVisor intercept system
calls and I/O requests from the container and filter them
before allowing them to be processed by the host OS [30].

CloudflareWorkers [33] is a lightweight runtime-based
sandbox for Node.js. Unlike other serverless computing plat-
forms, Cloudflare Workers does not use containers or VMs
for isolation. Instead, it utilizes V8:Isolate, a lightweight
context in the V8 javascript engine. Cloudflare Workers ex-
hibits high performance because a single process can per-
form hundreds of V8:Isolate. However, multiple functions
are executed in a single V8 process, so its isolation level is
weaker than others [17].

Catalyzer [19] is a gVisor-based serverless platform, spe-
cially designed to reduce start-up time. It provides a sandbox
fork approach that restores a function from a checkpoint im-
age. By restarting from a checkpointed image, it can reduce
start-up time significantly. In addition, it proposes a new OS
primitive, sfork, to further reduce initialization costs for a
warm start. The sfork primitive uses a clean state sandbox
template for the user’s application. Catalyzer guarantees the
same isolation level with gVisor because it is based on gVisor.
Summary. Current serverless computing platforms have
limitations in performance, resource efficiency, and safety. To
the best of our knowledge, Fireworks is the first serverless
computing platform, which is highly performant, memory-
efficient, and guarantees high VM-level isolation. Fireworks
fulfills these qualities by leveraging the combination of Just-
In-Time Compilation (JIT) and VM-level snapshots.

3 Fireworks Design
In this section, we present the design of Fireworks, a novel
serverless computing framework providing (1) high perfor-
mance both in start-up and execution, (2) a high isolation
guarantee to provide a high security level, and (3) high
memory efficiency for saving hardware resources. We first
overview the Fireworks design (§3.1) and then describe the
detailed design of each component, which perform each step
from installing to launching the function (§3.2–§3.6).

3.1 Design Overview
The overall flow of Fireworks is divided into two phases, (1)
the installation phase and (2) the invocation phase, as shown
in Figure 2. In the installation phase, Fireworks creates a
post-JIT VM snapshot of an installed serverless function.

Code
annotator

MicroVM
Manager

Snapshotter

MicroVMFireworks

Firecracker

Host OS (Linux)

@Request_JIT(function name1)

@Requsst_JIT(function name2)

…

function name1() {
…}

function name2() {
...}

function main() {
…}

User code

Read_arguments()
main()

Parameter
passer

MicroVM #1 queue

MicroVM#N queue
...

Invoker

Request_snapshot()

Installation phase Invocation phase
Annotated code

❺

①

②

③

④

❻
❼

❽

Annotated code

Figure 2. Fireworks overall architecture.

Then in the invocation phase, Fireworks restores the post-
JIT VM snapshot of the serverless function and resumes
execution with new arguments.
Fireworks components. Fireworks consists of fivemain
components: (1) microVM manager, (2) code annotator, (3)
invoker, (4) snapshotter, and (5) parameter passer, as shown
in Figure 2. The microVM manager controls creating, snap-
shotting, resuming a microVM on the Firecracker hypervi-
sor. The code annotator is responsible for transforming a
user-provided serverless function’s source code, such that
the serverless function follows the Fireworks procedure of
installation and invocation. The added code (marked blue
in Figure 2) by the code annotator includes: enforcing JITting
of the function code, requesting VM-level snapshot creation,
and taking function parameters. The invoker receives the
user’s request from the serverless frontend and launches
the function. The snapshotter creates a VM-level snapshot
according to the annotated function request. The parameter
passer helps the function get parameters when the snapshot
resumes at the regular function entry. We will explain each
phase of Fireworks’s operation in detail in the rest of this
section.
Installation phase. Fireworks adds annotations to a user-
provided serverless function code and creates a VM-level

666

Fireworks: A Fast, Efficient, and Safe Serverless Framework using VM-level post-JIT Snapshot EuroSys ’22, April 5–8, 2022, RENNES, France

snapshot after finishing the JIT compilation of the server-
less function code. The installation procedure is as follows;
Fireworks first sends a request to create a microVM that is
ready for a runtime to the Firecracker hypervisor (1 in Fig-
ure 2). Then Fireworks transforms the source code of the
serverless function (written in either Node.js or Python) to
perform JIT and create a snapshot (2). Fireworks invokes
the annotated serverless function (3), and the annotated
serverless function performs JITting itself and creates a snap-
shot right before the original serverless function entry point
(4). Note that Fireworks’s use of JIT is conceptually simi-
lar to Ahead-Of-Time compilation (AOT) provided by some
language runtimes (e.g., C#), but it additionally leverages
VM-level snapshot creation for instant start-up and higher
isolation guarantees.
Invocation phase. In the invocation phase, Fireworks
restarts the snapshot created in the installation phase. When
the serverless function is invoked, Fireworks first sets up a
network for the microVM (5 6 in Figure 2) and restarts the
VM snapshot for the serverless function (7). The annotated
serverless function is resumed right after the snapshot point.
It then reads the function parameters from Fireworks and
executes the regular serverless function entry (8).
How Fireworks meets the requirements. Fireworks
meets our design goals as follows:
• High isolation level: Fireworks runs each invoked server-
less function in a separate VM (i.e., microVM in Firecracker),
providing a high isolation level compared to approaches
using a container or a runtime as a sandbox.

• Highperformance: Fireworks achieves high performance
with an instant start-up and JITted function execution.
Essentially, Fireworks uses a microVM snapshot that is
created after a function is loaded and JITted. Hence, there
is no initialization time – such as booting the VM and
OS, launching a runtime, or loading the serverless func-
tion to the runtime – so Fireworks achieves an instant
start-up of a serverless function. Moreover, the annotated
serverless function is already JIT-compiled within the VM
snapshot so that the serverless function can be directly
executed during runtime. Since JIT-compiled code is faster
than an interpreter and we do not need to pay the cost of
JIT compilation during the runtime, the serverless function
execution time is significantly reduced.

• Memory efficiency: Multiple instances of a serverless
function can share the VM-level memory snapshot in a
copy-on-write (CoW) manner. Fireworks uses private
mapping (i.e., MAP_PRIVATE) for the snapshot, so it shares
the guest physical pages if there is no change; otherwise,
it relies on copy-on-write. Thus, the snapshot shares the
states of the microVM, OS, library, runtime, and even the
JITted code. Only argument-specific execution state, which
is updated during serverless function execution, will not
be shared.

1 # A simplified serverless function printing "hello world".
2 @jit(cache=True)
3 def main(params):
4 print("hello world ", params)
5
6 # Trigger JIT compilation of all user functions, "main".
7 def __fireworks_jit():
8 main(default_params)
9
10 # Send an HTTP request to host creating a VM snapshot.
11 def __fireworks_snapshot():
12 ploads = {’snapshot’:’y’, ’name’:SERVERLESS_FUNCTION_NAME,
13 ’srcfcID’:srcfcID}
14 r = requests.get(’http://172.17.0.1’, params=ploads)
15
16 # This is where the program execution starts first time.
17 def function __fireworks_main(stdout):
18 # First it performs JIT compilation.
19 __fireworks_jit()
20 # Then it creates a VM snapshot.
21 __fireworks_snapshot()
22 # Upon invocation, it resumes here and first gets parameters.
23 users_params = subprocess.check_output(
24 ’kafkacat -C -b 172.17.0.1:9092 -t topic’+
25 str(fcID)+’ -o -1 -c 1’,
26 shell=True).decode("utf-8")
27 # Then it start the entry point of a serverless function
28 # with given parameters.
29 main(user_params)

Figure 3. A simplified example of Fireworks source code annota-
tion written in Python.

3.2 Automatic Source Code Annotation
The code annotator automatically adds additional instru-
mentation to a user’s serverless function. Figure 3 shows
an example of an annotated version of user code written
in Python. We omit its implementation details for clarity.
Added instrumentation consists of three parts: (1) perform-
ing JIT compilation (Lines 7–8), (2) creating a VM snapshot
(Lines 11–14), and (3) starting the serverless main function
with new parameters upon invocation (Lines 23–29).

To perform JIT compilation with annotation, Fireworks
leverages Python Numba [9]. Python Numba performs JIT
compilation of functions annotated with @jit(cache=True)
(Line 2). Fireworks adds this JIT annotation for all meth-
ods in a serverless function. In Figure 3, Fireworks adds
__fireworks_jit(), which triggers JIT compilation of appli-
cation code. Similarly, the V8 javascript engine used in the
Node.js runtime offers comparable annotation opportunities,
which performs JIT compilation of specified methods.

A VM snapshot should be created after finishing JIT com-
pilation and before starting at the serverless function entry
point. To precisely control the snapshot point, Fireworks
adds snapshot creation code (__fireworks_snapshot() at
Line 21) to the source code. The snapshot is directed to be
created right after finishing JIT compilation (Line 19) and
before resuming execution (Line 29).
The last part is the main function (__fireworks_main()

at Line 17), where the language runtime starts program exe-
cution. After JIT compilation and snapshot creation, it gets
parameters from a message queue associated with the func-
tion (Line 23). To distinguish the function instance (fcID, a

667

EuroSys ’22, April 5–8, 2022, RENNES, France Wonseok Shin, Wook-Hee Kim, and Changwoo Min

File

MicroVM 1 MicroVM 2

MicroVM
OS library runtime JITted

code
MicroVM

OS library runtime JITted
codestate1 state2

Host

MicroVM

Metadata

In memory
data

Snapshot

MicroVM
OS library runtime JITted

code

Figure 4. Sharing VM-level memory snapshot among multiple
microVMs (i.e., sandboxes for a serverless function) in Fireworks.

microVM ID), Fireworks uses Firecracker’s microVM Meta-
data Service (MMDS) [20].

3.3 Creating a post-JIT VM Snapshot
__fireworks_jit() is called in the annotated program (Line 19
in Figure 3, 3 in Figure 2). Python performs JIT compilation
for the methods annotated with @jit(cache=True). Simi-
larly, for Node.js, the runtime first interprets the source code
into bytecode, and the Node.js JIT compiler engine, turbofan,
generates machine code from the Abstract Syntax Tree (AST)
for the methods with JIT annotation [2]. After JIT compi-
lation, Fireworks creates a snapshot to store the current
memory status. Fireworks creates a VM-level memory snap-
shot, which stores all guest physical memory containing the
microVM, OS, libraries, language runtime, and even JITted
machine code, as illustrated in Figure 4. Fireworks sends
an HTTP request to the host to create a snapshot using the
Firecracker API (__fireworks_snapshot() at Line 21 in Fig-
ure 3). Firecracker then creates a memory snapshot of an
entire microVM and stores the snapshot in a file.
This completes the Fireworks installation phase of a

serverless function (1 – 4 in Figure 2).

3.4 Invoking a Serverless Function
After a serverless function is installed, Fireworks can in-
voke the serverless function from a request by resuming
the VM snapshot (5 – 8 in Figure 2). When a user sends a
request to the serverless function, Fireworks puts the re-
quested information into the parameter passer queue and
requests to resume the microVM to the Firecracker hypervi-
sor. A microVM is restarted with the corresponding snapshot
image. Hence, invoking the serverless function is nothing
but loading the snapshot as a file into memory. Fireworks
resumes execution right after the post-JITted VM snapshot
image is created. Before resuming the snapshot, Fireworks
configures the network and prepares parameter passing so
the resumed microVM can access the network and take the
parameters of the requested function. We will describe these
two parts in detail in the following sections.

MicroVM
Manager

IP
A.A.A.A

MicroVM#1

Fireworks

...

tap0

Iptables
A.A.A.A

 → expose B.B.B.B

Network namespace1

Pass unique information
of MicroVM through MMDS

IP
A.A.A.A

MicroVM#2

tap0

Iptables
A.A.A.A

 → expose C.C.C.C

Network namespace2

Figure 5. Network connectivity in Fireworks.

3.5 Enabling Network Connectivity
While the VM-level snapshot provides excellent performance,
it causes a problem in using the network inside a microVM.
Suppose that multiple microVMs based on the same snapshot
are launched. In this case, the microVMwill have network re-
source conflicts – i.e., each microVM resumed from the same
snapshot will have the same IP address and MAC address.
To solve this network connectivity problem, Fireworks

uses the network namespace [21] and Network Address
Translation (NAT). Figure 5 illustrates how the network
namespace works in Fireworks when two microVMs share
the same snapshot image. When microVM#1 receives a net-
work packet, the packet comes to the IP address B.B.B.B,
the external exposed IP of microVM#1. Since the IP address
B.B.B.B belongs to the network namespace 1, the destina-
tion IP of the packet is changed to A.A.A.A through the NAT
table in iptables of network namespace 1. When the packet
arrives at microVM#1 through tap device 0 (tap0), the tap
device name is associated with the snapshot. Although both
microVM#1 and microVM#2 have the same tap device name,
tap0, the network namespaces of each microVM are different.
Thus, there is no conflict. The reply packet goes out through
the tap0 device again and goes outside through the NAT after
translating the source IP (A.A.A.A) to its external IP (B.B.B.B
or C.C.C.C) associated with its network namespace.

Note that the information for network connectivity of mi-
croVMs that are created from the same snapshot image are
identical. So Fireworks needs additional information to dis-
tinguish themicroVMs.We leverage Firecracker’sMMDS [20]
to track the metadata (e.g., microVM ID) of the microVMs.

3.6 Taking Serverless Function Arguments
Typically, a serverless platform receives a user request from
the serverless frontend. Then it internally creates an appro-
priate sandbox and executes the code on it. When creating
the environment for the request, it passes arguments in a
request to the serverless function. However, in Fireworks’s

668

Fireworks: A Fast, Efficient, and Safe Serverless Framework using VM-level post-JIT Snapshot EuroSys ’22, April 5–8, 2022, RENNES, France

snapshot/restart-based approach, a serverless function can-
not receive arguments from its memory because the memory
states are exactly the same after resuming.
To solve this problem, Fireworks adds code to fetch pa-

rameters from outside of the microVM as soon as it loads
the snapshot. Fireworks exploits a Kafka queue [32] – a
software message bus – to pass arguments to a serverless
function. Before resuming the microVM, Fireworks first
puts the function arguments into a designated Kafka queue.
When the microVM resumes, it first fetches the parame-
ters from a queue (Line 23 in Figure 3). Since the snapshot
image is identical, the serverless function needs additional
information to find the corresponding Kafka queue. The
identification information is inserted by Fireworks using
MMDS when resuming the snapshot. When the snapshot
image resumes successfully, the serverless function checks
its identification number (microVM ID) and reads arguments
from the appropriate queue.

4 Implementation
We implement Fireworks based on Firecracker v0.24.0.
Fireworks leverages Firecracker’s microVM features for
guaranteeing a high level of isolation with the snapshotting
function. We develop an end-to-end serverless infrastructure
including an invoker, code annotator, snapshotter, and a
parameter passer as described in §3. The parameter passer is
implemented based on Kafka [32], a software message bus.
The source code of Fireworks collectively consists of 3,500
lines of Bash, Node.js, Python, and C++ code.

5 Evaluation
We evaluate Fireworks by answering the following ques-
tions:
• How much can Fireworks reduce the end-to-end latency
of various serverless functions, including compute-intensive
and I/O-intensive ones, by reducing the start-up time and
making function execution time faster? (§5.2)

• How effective is Fireworks’s approach in improving the
performance of real-world serverless applications? (§5.3)

• How much memory can Fireworks save by sharing mem-
ory snapshots across microVMs? (§5.4)

• How effective are Fireworks’s design choices (VM-level
snapshot, post-JIT snapshot) in improving performance
and saving memory usage? (§5.5)

5.1 Evaluation Methodology

Evaluation environment. We perform our evaluations on
a Intel Xeon Platinum 8180 CPU (64 physical cores) server
with 128 GB memory and 2 TB SSD. For all evaluations, we
configured a microVM similar to typical configurations in
serverless computing: one vCPU, 512 MB memory, and 2 GB
of disk space [48].1 Besides these specifications, Fireworks
1Average memory size in a serverless sandbox is 170MB [48].

uses the default settings of Firecracker [5], such as disk em-
ulation.

We compare Fireworks against the state-of-the-art server-
less frameworks and sandboxes designed for serverless com-
puting: OpenWhisk [12], gVisor [25], and Firecracker [5]. We
use OpenWhisk v20.11 with Kubernetes and gVisor v1.0.2
with Docker. Regarding language runtimes, we use the latest
versions as of this publication: Node.js v12.18.3 and Python
v3.8.5. We do not include Catalyzer [19] because its source
code is not publicly available.
Note that we follow the standard practice in serverless

computing to evaluate our new serverless framework,
Fireworks. We follow the evaluation settings of previous
studies [19, 54, 61] on a single machine and measure the
start-up time, execution time, and memory footprint of the
serverless functions.
Workloads. We used two serverless benchmarks: FaaS-
dom [40] and ServerlessBench [61] as shown in Table 2.
For micro-benchmarking, we chose the FaaSdom bench-

mark, which consists of two compute-intensive benchmarks
(faas-fact and faas-matrix-mult) and two I/O-intensive
benchmarks (faas-netlatency and faas-diskio) written in
Node.js and Python. faas-fact and faas-matrix-mult per-
form integer factorization and multiplication of large ma-
trices multiple times. The faas-netlatency measures only
network latency by immediately sending a small-sized HTTP
response as soon as the benchmark function is invoked. The
faas-diskio is a benchmark to measure disk I/O perfor-
mance, including I/O operations to disk.
In addition, we chose two real-world serverless applica-

tions from ServerlessBench [61]: Alexa Skills and data anal-
ysis, both of which are written in Node.js. Alexa Skills is
a collection of applications performed through the Ama-
zon Alexa AI speaker device. The Amazon Alexa AI speaker
receives a user’s voice commands and performs the corre-
sponding Alexa Skills via serverless functions in the Cloud
based on its analysis. It provides the functionality of a sched-
uler and smart home management. Another application is
the data analysis application. It calculates bonuses and taxes
with employees’ roles and makes statistics. The wages of
multiple employees are continuously entered when a user
wants. Note that these two real-world applications consist
of a chain of serverless functions, as illustrated in Figure 8.
For the real-world applications, we only compare against
OpenWhisk [13]. This is because sandbox managers, such
as Firecracker [5] and gVisor [25], cannot process a chain of
serverless functions, and only OpenWhisk and Fireworks
are able to process a chain of serverless functions.
Evaluation configuration. We measured and reported
cold start performance (denoted with c) as well as warm
start performance (denoted with w) in Figure 6 and Figure 7.
We follow the same configuration for warm start evaluation
as done in previous studies [19, 61]. Specifically, for gVisor

669

EuroSys ’22, April 5–8, 2022, RENNES, France Wonseok Shin, Wook-Hee Kim, and Changwoo Min

Application Name Description Language

FaaSdom: faas-fact Integer factorization Node.js, Python
FaaSdom: faas-matrix-mult Multiplicaiton of large matrices Node.js, Python
FaaSdom: faas-diskio Disk I/O performance measurement Node.js, Python
FaaSdom: faas-netlatency Network latency test that immediately responds upon invocation Node.js, Python

ServerlessBench: Alexa skills Apps run through Alexa AI device Node.js
ServerlessBench: data analysis Store and analyze the statistics employees’ wage Node.js

Table 2. Tested serverless applications.

and Firecracker, we first launched a sandbox, installed an
application on it, and then paused the sandbox to keep the
sandbox in memory. For OpenWhisk, we first registered and
invoked a function. When the function is invoked, a con-
tainer is lauched and the function is executed in the container.
OpenWhisk keeps the container alive in memory for a while.
We do not distinguish cold or warm starts in Fireworks
because Fireworks always resumes from a VM snapshot.
Post-JIT snapshot creation time. We measure the post-
JIT snapshot creation time in Fireworks’s installation phase.
The whole process installs the necessary packages, runs the
application for JITing, and creates a snapshot. For the FaaS-
dom benchmark written in Python, the post-JIT snapshot
creation time depends on the complexity of the application
due to JIT compilation of the application code. For the FaaS-
dom benchmark written in Node.js, the npm package instal-
lation process dominates installation time. However, making
a snapshot takes 0.36-0.47 seconds for the FaaSdom bench-
mark in Nodejs, and takes 0.38-0.44 seconds in Python. More
complex ServerlessBench applications depend on how many
functions they contain.

5.2 FaaSdom Microbenchmark
We first discuss the evaluation results of the Node.js ver-
sion of the FaaSdom benchmark (§5.2.1) and then discuss the
Python version (§5.2.2) because we found that these two lan-
guage runtimes have different performance characteristics.

5.2.1 Node.js Benchmarks. Figure 6 shows the perfor-
mance comparison and latency breakdown of the Node.js
version of the FaaSdom benchmark.Wemeasured the latency
from invocation of the serverless function to the serverless
function’s termination. We breakdown latency into start-up
time (start-up), function execution time (exec), and all other
times besides these two (others), which include network la-
tency, disk I/O, etc, depending on benchmark behavior. For
OpenWhisk, gVisor, and Firecracker, we measured the la-
tency for both cold start (c) and warm start (w). However,
Fireworks, which relies on snapshot restarting, does not
have such a distinction (both).
(1) Compute-intensive benchmarks. Figure 6(a) is the
evaluation result for the CPU-intensive integer factorization
benchmark (faas-fact). Fireworks shows an extremely fast
start-up time, which is comparable to or even faster than

warm start-up in other serverless platforms. Specifically, it
shows up to 133× faster cold start-up and up to 3.8× faster
warm start-up due to its snapshot-based approach.

Firecracker shows the slowest cold start-up time because
it is a VM-based approach, which requires booting of the
VM, guest OS, and runtime before loading the serverless
function.

The container-basedOpenWhisk shows a relatively shorter
cold start-up time than Firecracker, but it has a pretty high
overhead to initialize a container (e.g., authentication and
message queue initialization) in the case of a cold start.

gVisor shows slower cold start-up time and execution time
as it enforces additional security checks on the container to
improve security of the runtime environment.

The gap in execution time between Fireworks and others
is not as significant as the start-up time. That is because
Node.js runtime quickly performs JIT compilation for hot
methods. However, Fireworks still shows up to 38% faster
performance in cold start cases and 25% faster performance
in warm start cases.
The evaluation results of (faas-matrix-mult), another

compute-intensive benchmark, show similar performance
trends as with the integer factorization benchmark, discussed
earlier.
(2) Disk-intensive benchmark. The disk-intensive bench-
mark, faas-diskio, performs 10KB-sized file read and write
operations 100 times. Overall, Fireworks shows significantly
shorter latency than other serverless platforms. Specifically,
as shown in Figure 6(c), Fireworks shows up to 68× faster
cold start-up and up to 3.8× faster warm start-up times. More-
over, it shows up to 9.2× faster execution time than other
serverless frameworks. Also, Fireworks shows 25% perfor-
mance improvement against Firecracker using a snapshot. In-
terestingly, we found that the execution time in I/O-intensive
workloads is mostly determined by the I/O efficiency of the
sandbox mechanism used, while the performance impact of
JIT compilation is marginal.
gVisor shows the slowest I/O performance because sys-

tem call monitoring uses two additional components: Sentry
and Gofer. Sentry monitors system calls using a seccomp
filter [29] and sends file I/O requests to Gofer I/O to check all
access requests for host resources [53]. While the cost of sys-
tem call monitoring using Sentry and Gofer is much higher
than the I/O overhead in Fireworks, the security level of

670

Fireworks: A Fast, Efficient, and Safe Serverless Framework using VM-level post-JIT Snapshot EuroSys ’22, April 5–8, 2022, RENNES, France

0

500

1000

1500

2000

2500

c w c w c w both
0

200
400
600
800
1000
1200
1400
1600

c w c w c w both
0

2000
4000
6000
8000
10000
12000
14000
16000
18000
20000

c w c w c w both
0

200
400
600
800
1000
1200
1400
1600

c w c w c w both
0

500

1000

1500

2000

2500

c w c w c w both

tim
e
(m

s)

(a) faas-fact

start-up

Firew
orks

Firec
racke

r
gViso

r
Open

Whisk

(b) faas-matrix-mult

exec

Firew
orks

Firec
racke

r
gViso

r
Open

Whisk

(c) faas-diskio

others

Firew
orks

Firec
racke

r
gViso

r
Open

Whisk

(d) faas-netlatency

Firew
orks

Firec
racke

r
gViso

r
Open

Whisk

(e) geomean

Firew
orks

Firec
racke

r
gViso

r
Open

Whisk

Figure 6. Latency comparison of the Node.js version of FaaSdom benchmark. "c" is short for "cold start" and "w" is short for "warm start".

0
2000
4000
6000
8000
10000
12000
14000

c w c w c w both
0

200
400
600
800
1000
1200
1400
1600
1800

c w c w c w both
0

2000
4000
6000
8000
10000
12000
14000
16000
18000
20000

c w c w c w both
0

200
400
600
800
1000
1200
1400
1600

c w c w c w both
0

200
400
600
800
1000
1200
1400
1600
1800
2000

c w c w c w both

tim
e
(m

s)

(a) faas-fact

start-up

Firew
orks

Firec
racke

r
gViso

r
Open

Whisk

(b) faas-matrix-mult

exec

Firew
orks

Firec
racke

r
gViso

r
Open

Whisk

(c) faas-diskio

others

Firew
orks

Firec
racke

r
gViso

r
Open

Whisk

(d) faas-netlatency

Firew
orks

Firec
racke

r
gViso

r
Open

Whisk

(e) geomean

Firew
orks

Firec
racke

r
gViso

r
Open

Whisk

Figure 7. Latency comparison of the Python version of FaaSdom benchmark. "c" is short for "cold start" and "w" is short for "warm start".

gVisor is still lower than VM-based Fireworks because the
container-based approach shares resources on the same host.
Firecracker shows higher performance than gVisor be-

cause it eliminates heavy QEMU for I/O emulation. Also,
Firecracker removes unnecessary devices and uses a light-
weight 9p filesystem in crosvm [5].

Container-based OpenWhisk uses OverlayFS [18] and ch-
root [1] while it interacts directly with the host filesystem.
Therefore, I/O speeds are faster than for a microVM, which
has its own VM file systems.
(3) Network-intensive benchmark. The network bench-
mark, faas-netlatency, sends a small-sized HTTP response
(79-byte body, 500-byte header) without any operation and
reports the latency. Fireworks shows up to a 25× faster
cold start-up time and up to a 3.6× faster warm start-up
time. Fireworks is up to 22× faster in cold start cases, up to
6.5× faster in warm start cases, and up to 4.2× faster than
Firecracker using a snapshot. Fireworks has the additional
overhead of NAT and tap device, but this additional network
overhead is negligible in the end-to-end latency. Fireworks
shows high performance mainly because the benchmark
code starts immediately after loading the snapshot.
(4) Summary. Figure 6(e) shows the geometric mean of
four FaaSdom benchmarks. Overall, Fireworks shows up to
a 8.6× shorter latency compared to other serverless frame-
works.

5.2.2 Python Benchmarks. Figure 7 shows the evalua-
tion results of the Python version of FaaSdom benchmarks.
The evaluation results reveal that Python is, in general, slower
than Node.js.

(1) Compute-intensive benchmarks. Fireworks shows
significantly higher performance in compute-intensive bench-
marks compared to other serverless frameworks. Interest-
ingly, Fireworks dramatically reduces the execution time
for Python by leveraging post-JIT machine code in the snap-
shot. For integer factorization shown in Figure 7(a), Fireworks
shows a 59.8× faster cold start-up time, a 4.4× faster warm
start-up time, and is 12.3× faster than Firecracker by using
a snapshot. Also, it achieves 20× faster execution time in
cold start cases and 14.6× faster execution time in warm
start cases. For matrix multiplication shown in Figure 7(b),
Fireworks shows similar performance trends as in integer
factorization. Fireworks shows up to a 74.2× faster cold
start-up time and a 4.4× faster warm start-up time. Also, it
achieves up to 80× faster execution time for cold start cases
and up to 75× faster execution time for warm start cases.
(2) I/O-intensive benchmarks. Both disk-intensive and
network-intensive benchmarks in Figure 7(c) and (d) show
similar performance trends to their Node.js counterparts in
Figure 6(c) and (d) because I/O latency is the dominant factor
in performance.
(3) Summary. Figure 7(e) shows the geometric mean of
the four benchmarks. Overall performance improvement of
Fireworks is up to 19×, which is 2.2× higher than Node.js.
In particular, we observe that the overall execution time con-
siderably decreases, showing that the effect of post-JIT is
significant in Python. Another interesting point is that I/O
performance is similar between Python and Node.js. This
means that I/O performance mostly depends on the I/O effi-
ciency of the sandbox mechanisms rather than the language
or runtime.

671

EuroSys ’22, April 5–8, 2022, RENNES, France Wonseok Shin, Wook-Hee Kim, and Changwoo Min

Client

Fontend Voice
analysis

Smart
Home

Plug

LightTemperature

Fact

Reminder

CouchDB Devices

TV

Door

(a) Alexa Skills (nested)

Wage data

Check Format

Sum Merit payDB write

Read

CouchDB

Average
wageStatistics

Wage analysis

Write calculated data to DB

(b) Data Analysis (sequence + nested)

Figure 8. Real-World serverless applications.

0
2000
4000
6000
8000
10000
12000

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

inser
t

analy
sis inser

t
analy

sis

tim
e
(m

s)

(a) Alexa Skills

start-up
exec

others

FireworksOpenWhisk

(b) Data Analysis

FireworksOpenWhisk
Figure 9. Execution time comparison of real-world applications.

5.3 Real-World Serverless Applications
We chose two real-world applications in ServerelessBench [61]
because these two are the only applicationswritten inNode.js
(or Python). These two applications are composed of a chain
of serverless functions, which interact with each other to
deliver the processed data in the form of pipes. Thus, we
could not evaluate gVisor or Firecracker for these real-world
applications because they cannot execute a chain of func-
tions. Hence, we evaluate Fireworks against OpenWhisk.
Figure 8 shows the flow of real-world applications, where a
node represents a serverless function running on a microVM,
and an edge represents a function invocation.
(1) Alexa Skills. Alexa skills [7] supports three skills: fact,
reminder, and smart home. It performs voice analysis using
input text provided by the user and identifies the request. The
fact skill answers simple common sense, and the reminder
skill searches or enters a schedule into CouchDB [11], a
NoSQL database. The data inserted to CouchDB includes
item, place, and related URL fields. The smart home skill
notifies the on/off status of each device (e.g., light, door, and
TV) to the user. Note that the input parameters of Alexa are

provided by a JSON file, and the scenario of Alexa is quite
complicated because it simulates the real Alexa’s workload
such as door password, schedule details, etc. Also, the types
of input parameters for a function could be different from
what was JITted. Hence our experiments include the worst-
case in JIT compilation, de-optimizing JITted code [2].
Figure 9(a) shows the performance comparison between

Fireworks and OpenWhisk as well as its latency breakdown.
For the evaluation, we sent requests to Alexa Skills asking for
a simple fact, then checking the schedule through reminder
and checking the on/of the status of home appliances through
smart home. Fireworks shows 12.5× faster start-up time and
2.4× faster execution time compared to OpenWhisk.
(2) Data Analysis. The data analysis application receives
personal wage data from the user and analyzes the wage.
When a user inserts personal wage data, it checks the format
to ensure that it is valid data and then changes the format
for insertion to CouchDB. The data entered in CouchDB
consists of a name, ID, role, and base payment. The analysis
function chain in the dashed box of Figure 8(b) is triggered
when a database is updated. The analysis results are inserted
into the CouchDB. The evaluation result for the data analy-
sis application shows similar performance trends to Alexa
Skills. For the data insertion step, Fireworks shows 25.6×
shorter start-up time and 11.8× faster execution time. The
data analysis step shows 27× faster start-up time and 4.9×
faster execution time.

5.4 Memory Usage
Fireworks shares memory snapshots across multiple mi-
croVMs as discussed in §3.3. In order to understand the mem-
ory saving effect in Fireworks, we compare the amount of
memory usage of Fireworks and Firecracker, both of which
provide VM-level isolation. We used the FaaSdom integer fac-
torization benchmark (faas-fact), which is a computation-
intensive workload used in §5.2.1. We measured the Propor-
tional Set Size (PSS) in Linux using smem [36]. PSS is a physi-
cal memory consumption considering memory sharing; for
the memory shared by N processes, PSS accounts 1/N to each
process. Figure 10 shows the memory usage of Firecracker
and Fireworks as the number of microVMs increases. We
set the kernel parameter – vm.swappiness – to 60, mean-
ing that swapping starts to happen when 60% of physical
memory is consumed. We ran the test until swapping hap-
pened to see the maximum possible amount of consolida-
tion. Fireworks could launch 565 microVMs, but Firecracker
could only launch 337 microVMs before triggering swapping.
This means that Fireworks allows for consolidating 167%
more sandboxes than Firecracker as the amount of memory
shared by JIT and the OS snapshots increases.

672

Fireworks: A Fast, Efficient, and Safe Serverless Framework using VM-level post-JIT Snapshot EuroSys ’22, April 5–8, 2022, RENNES, France

0
5000
10000
15000
20000
25000
30000
35000

0 100 200 300 400 500 600

m
em

or
y
us
ag
e
(M

B)

sandboxes

Fireworks
Firecracker

Figure 10. Memory usage comparison between Fireworks and
Firecracker.

5.5 Impact of VM-level Snapshot and post-JIT
Weanalyze how our design choices affect performance (§5.5.1)
and memory consumption (§5.5.2). We separately investi-
gate the impact of using a VM-level OS snapshot (creating a
VM snapshot after a guest OS finishes booting) and post-JIT
snapshot (creating a VM snapshot after loading a serverless
function and finishing JIT compilation of the function). We
start from the original version of Firecracker as a baseline,
which does not use a snapshot.

5.5.1 Performance. We conduct the factor analysis to
measure the performance gains from a VM-level OS snapshot
and our post-JIT snapshot, as shown in Figure 11.
+ VM-level OS snapshot. Adding a VM-level OS snapshot
to Firecracker improves the performance of serverless func-
tions by eliminating the OS boot time. For compute-intensive
workloads written in Node.js, adding this snapshot improves
performance by 2.3×. For network-intensive workload writ-
ten in both Node.js and Python, this snapshot shows up to
6.1× faster performance.
+ Post-JIT snapshot. Adding a post-JIT snapshot improves
the performance significantly, as shown in Figure 11. Since
the interpreters can trigger JIT compilation during program
execution even when the VM-level OS snapshot is used, the
actual performance improvement of the post-JIT snapshot
depends on when the JIT compilation is triggered in the
execution of the VM-level OS snapshot. If JIT compilation
is triggered at an early stage of function execution, the per-
formance difference between the VM-level OS snapshot and
the post-JIT snapshot is relatively small. We checked when
JIT compilation is triggered in the VM-level OS snapshot
by using GetOptimizationStatus() in V8 and by manually
instrumenting the Python interpreter. We found that JIT
compilation was triggered near the end of function execu-
tion in faas-diskio-nodejs and faas-netlatency-nodejs.
Hence the Node.js code was executed in an interpreter mode
(no JIT) for most of the benchmark time, so the performance
improvement of the post-JIT snapshot over the VM-level
OS snapshot is significant. Also, the performance benefit of
the post-JIT snapshot is substantial in Python benchmarks
because the Python interpreter in our experiments did not
perform JIT compilation.

0
2000
4000
6000
8000
10000
12000
14000
16000

faas
-fac

t-no
dejs

faas
-ma

trix
-mu

lt-n
ode

js

faas
-dis

kio-
nod

ejs

faas
-ne

tlat
enc

y-n
ode

js

faas
-fac

t-py
tho

n

faas
-ma

trix
-mu

lt-p
yth

on

faas
-dis

kio-
pyt

hon

faas
-ne

tlat
enc

y-p
yth

on

tim
e
(m

s)

Firecracker
+VM-level OS snapshot

+post-JIT snapshot

Figure 11. Performance impact of Fireworks optimizations.

0

50

100

150

200

250

300

faas
-fac

t-no
dejs

faas
-ma

trix
-mu

lt-n
ode

js

faas
-dis

kio-
nod

ejs

faas
-ne

tlat
enc

y-n
ode

js

faas
-fac

t-py
tho

n

faas
-ma

trix
-mu

lt-p
yth

on

faas
-dis

kio-
pyt

hon

faas
-ne

tlat
enc

y-p
yth

on

m
em

or
y
us
ag
e
(M

B)

Firecracker
+VM-level OS snapshot

+post-JIT snapshot

Figure 12. Memory impact of Fireworks optimizations.

5.5.2 Memory Usage. We also conduct factor analysis to
analyze the memory impact of a VM-level OS snapshot and
our post-JIT snapshot. To see the memory impact of sharing
memory snapshots (shown in Figure 4), we ran 10 microVMs
concurrently, running the same benchmark, and reported
the memory usage of one microVM as in §5.4.
+ VM-level OS snapshot. All applications written in both
Node.js and Python show memory efficiency improvements.
OS snapshot shows up to a 73% improvement in memory
utilization by sharing resources.
+ post-JIT snapshot. In the case of applications written in
Node.js, adding post-JITting reduces memory usage up to
74%. However, there is no significant improvement in mem-
ory usage for Python applications. The memory usage of
the post-JIT snapshot mainly depends on the memory effi-
ciency of the JITted code. Specifically, Node.js V8 has been
optmized to lazily allocate memory for storing execution
state [55]. On the other hand, Python Numba duplicates a
JITted Python function to many modules due to the restric-
tion of LLVM MCJIT so increasing the memory usage [35].
Even though Fireworks consumes a similar amount of mem-
ory, Fireworks gains dramatic performance improvements.

6 Discussion and Limitation
De-optimization of JITted code. JITted code has a unique
challenge called de-optimization, which reverts a previous
JIT compilation. When code is JITted, the compiler applies
specialized optimizations for the runtime to the code. Thus,

673

EuroSys ’22, April 5–8, 2022, RENNES, France Wonseok Shin, Wook-Hee Kim, and Changwoo Min

the code needs to perform an undo operation when the
runtime profile is changed (e.g., type in dynamic typed lan-
guages) or when further optimization of the JITted code is
necessary so that the performance may decrease temporar-
ily. However, the undo operation executes bytecode, which
is already generated, so it does not incur high overhead.
Furthermore, each language runtime tries to minimize per-
formance degradation from de-optimization [2, 4]. Note that
our evaluations use various arguments, which can trigger de-
optimization. For instance, the Alexa workload uses various
arguments such as the door password and schedule infor-
mation. Nonetheless, our evaluation results always show a
performance improvement.
Disk space overhead for function snapshots. In server-
less computing, thousands of serverless functions are run-
ning in the same host machine simultaneously. When server-
less functions trigger to create their snapshot, disk space
overhead could be high. To resolve this disk space overhead,
previous works using a snapshot-based approach [54] lever-
age remote storage. We could also limit disk space and use a
replacement policy, which keeps frequently accessed func-
tions’ snapshots.
Security implications in snapshot-based approach. Sim-
ilar to other snapshot-based approaches [54], launching mul-
tiple microVMs based on the same memory snapshot in
Fireworks has security implications. The multiple instances
of microVMs will have the same random number generator
and the same memory layout, both of which reduce the sys-
tem’s entropy. For the random number generator, we can
leverage Linux random number generation (RNG) facilities,
providing unique entropy from the kernel to userspace. RNG
provides enough entropy when the CPU used is IvyBridge
or newer Intel processors. For address space layout random-
ization (ASLR), we can mitigate this issue by periodically
re-generating the VM snapshot similar to REAP [54].

7 Related Work
In this section, we discuss previous research efforts regarding
serverless computing.
Characterizing FaaSworkloads and benchmarks. Server-
less computing is a new paradigm, so there is not yet enough
information to understand the characteristics of serverless
workloads. Thus, there are several previous studies that con-
ducted reverse engineering to understand commercial server-
less computing platforms. Wang et al. [59] analyze the char-
acteristics of serverless computing platforms of well-known
Cloud providers, including AWS Lambda, Google Cloud, and
MS Azure, by conducting many experimental measurements
for serverless functions. Shahrad et al. [48] show charac-
teristics of serverless workloads on MS Azure serverless
computing platforms. They also propose a resource man-
agement policy to leverage serverless computing platforms.

FaaSProfiler [47] is a profiling platform for serverless ser-
vices. FaaSProfiles shows the architectural impact of server-
less computing platforms.
Optimizing serverless platform. There are two main cat-
egories of research to optimize serverless computing plat-
forms. One direction is to reuse resources, including network,
sandboxes, and runtime environments. Reuse mechanisms
can cache these resources or use checkpoint/restore-based
snapshots. Replayable Execution [57] proposed to use check-
point and restore on the OS kernel to reduce start-up time
and needed resources for serverless functions. The key differ-
ences between Replayable Execution and Fireworks are as
follows: (1) Fireworks relies on JIT annotation of dynamic
languages; (2) Fireworks leverages a VM-level snapshot,
so it ensures a higher level of security; (3) our Fireworks
approach is not limited to specific languages.
HotTub [38] eliminates JVM overheads in a parallel pro-

cessing environment by keeping the warm-up pool of JVM
runtime. It is applicable to serverless environments. Mohan
et al. [43] reduce cold start-up times by pre-creating the net-
work and attaching the network to new serverless function
containers. SOCK [45] is a streamlined container system opti-
mized for serverless computing. SOCK extends Zygote ideas
(i.e., pre-launching sandboxes) to serverless computing plat-
forms. It generalizes the provisioning of Zygote and proposes
package-aware caching to minimize start-up time. SAND [6]
uses application-level sandboxing. Checkpoint/restore for in-
stantiation is also one of themain directions to optimize start-
up time. REAP [54] mitigates performance bottlenecks from
page faults when it loads the serverless function’s snapshot
from disk to memory. It proposes proactively configuring the
memory’s working set before loading a snapshot to reduce
page faults. While both REAP and Fireworks use snapshots,
their approaches are fundamentally different. REAP focuses
on reducing page fault overhead by prefetching snapshot
images. Meanwhile, Fireworks reduces start-up time by
post-JITting function code. Hence, Fireworks can also em-
ploy REAP’s prefetching to further reduce the overhead for
reading snapshots from disk.

Ignite [16] is a new runtime platform to reduce the start-up
time by leveraging JIT and sharing code and runtime pro-
files. Ignite shares the motivation to leverage JIT to reduce
the start-time with Fireworks. Still, Fireworks also consid-
ers the security problems present in consolidated serverless
functions, which is also a critical problem in serverless com-
puting frameworks, by using a VM-level snapshot.

AWS supports JIT only for pre-provisioned instances writ-
ten in C#/.NET [3]. However, the JIT of .NET does not allow
sharing of code or resources.

Another direction to optimize serverless platforms is to op-
timize the sandbox. SEUSS [15] leverages unikernel snapshot
stacks for the execution of serverless functions. It deploys

674

Fireworks: A Fast, Efficient, and Safe Serverless Framework using VM-level post-JIT Snapshot EuroSys ’22, April 5–8, 2022, RENNES, France

page-level sharing across the snapshot. LightVM [41] pro-
poses a lightweight VM through use of a unikernel. Faasm [50]
is a serverless runtime that leverages WebAssembly [26] for
efficient isolation of serverless functions.
Another approach is to place sandboxes close to where

data is stored. Shredder [62] implements a sandbox near the
data storage with V8:Isolate.
The main difference between Fireworks and previous

works is that we post-JIT the source code. The JITted code
can efficiently reduce not only the cold start-up time but also
the execution time for serverless functions.
Extending serverless computing. Since most serverless
platforms support stateless serverless functions only, it is
hard to extend applications that are disk I/O intensive into
serverless applications. So, a few previous works [46, 52]
extend serverless applications to support stateful serverless
functions instead. Cloudburst [52] presents a stateful FaaS
that can guarantee mutable state and communication us-
ing Anna Key-Value store [60]. Anna provides auto-scaling
and logical disaggregation of compute nodes and storage
nodes to support stateful function efficiently. Starling [46]
is a query engine for leveraging serverless computing plat-
forms. Starling shows the feasibility of query engines for
serverless computing platforms with several optimizations
to mitigate the high latency of serverless storage access.
In addition, there are some research efforts to extend

scientific applications to serverless applications. Numpy-
wren [49] is an application that runs linear algebra opera-
tions as serverless functions on top of disaggregated stor-
age. Excamera [22] is an application that leverages cloud
functions for video processing. Excamera shows efficient
video processing using the flexible use of thousands of func-
tions. Pocket [34] designs a serverless platform to satisfy
scalable demands. It automatically scales to support the ap-
plications at hand and determines the storage tier needed to
provide high-performance with low costs. Infinicache [56]
is an in-memory object caching system built on top of state-
less serverless functions. It shows the feasibility of the use
of serverless computing for in-memory object caching sys-
tems. AFT [51] introduces an atomic fault tolerance shim
between serverless functions and storage engines. It lever-
ages transaction concepts for serverless functions to provide
fault tolerance. Shredder[62] suggests the storage function
that allows computation to be performed in a storage node
with low latency.

8 Conclusion
In this paper, we present Fireworks, a fast, efficient, and safe
serverless computing platform. To the best of our knowledge,
Fireworks is the first serverless computing platform that
fulfills the three aspects for an ideal serverless platform: (1)
high isolation level, (2) high performance, and (3) high mem-
ory efficiency. We show how our VM-level post-JIT snapshot

efficiently reduces memory usage without compromising
the isolation level or increasing security risks. We evaluate
Fireworks against state-of-art serverless platforms, includ-
ing gVisor, OpenWhisk, and Firecracker, using two represen-
tative benchmark suites, FaaSdom and ServerlessBench. In
our evaluation, Fireworks significantly outperforms these
state-of-art serverless platforms, and it shows high memory
efficiency with the guarantee of a high level of isolation.

Acknowledgement
We thank our shepherd Abhilash Jindal and the anonymous
reviewers for their helpful comments to improve the paper.
This work was supported in part by Institute for Informa-
tion & communications Technology Promotion (IITP) grant
funded by the Korean government (MSIT) (No. 2014-3-00035)
and National Research Foundation of Korea (NRF) (No. NRF-
2021R1A6A3A03046359).

References
[1] chroot(2) — Linux manual page. https://man7.org/linux/man-pages/

man2/chroot.2.html, visited 2021-05-18.
[2] An introduction to speculative optimization in v8, 2017.

https://ponyfoo.com/articles/an-introduction-to-speculative-

optimization-in-v8, visited 2021-09-26.
[3] Managing lambda provisioned concurrency, 2021. https://docs.aws.

amazon.com/lambda/latest/dg/provisioned-concurrency.html, visited
2021-09-26.

[4] Turbofan v8, 2022. https://v8.dev/docs/turbofan, visited 2022-03-03.
[5] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight virtualization for serverless applications. In 17th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI), pages 419–434, 2020.
[6] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus

Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. SAND: Towards
high-performance serverless computing. In USENIX Annual Technical

Conference (USENIX ATC), pages 923–935, 2018.
[7] Amazon. Build An Alexa Fact Skill, 2020. https://github.com/alexa/

skill-sample-nodejs-fact, visited 2021-05-18.
[8] Amazon. AWS Lambda Pricing, 2021. https://aws.amazon.com/

lambda/pricing, visited 2021-05-18.
[9] Anaconda. Numba: A High Performance Python Compiler, 2018.

http://numba.pydata.org/, visited 2021-05-18.
[10] FNU Anjali, Tyler Caraza-Harter, and Michael M. Swift. Blending

containers and virtual machines: a study of firecracker and gvisor. 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments, 2020.
[11] Apache. CouchDB, 2021. https://couchdb.apache.org/, visited 2021-

05-18.
[12] Apache OpenWhisk. Apache OpenWhisk Documentation, 2016. https:

//openwhisk.apache.org/documentation.html#deploy_kubernetes, vis-
ited 2021-05-18.

[13] Apache OpenWhisk. Open Source Serverless Cloud Platform, 2016.
https://openwhisk.apache.org/, visited 2021-05-18.

[14] AWS. AWS Lambda, 2021. https://aws.amazon.com/lambda/, visited
2021-05-18.

[15] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. Seuss: Skip redundant paths tomake serverless
fast. In Proceedings of the Fifteenth European Conference on Computer

Systems, EuroSys, 2020.

675

https://man7.org/linux/man-pages/man2/chroot.2.html
https://man7.org/linux/man-pages/man2/chroot.2.html
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://v8.dev/docs/turbofan
https://github.com/alexa/skill-sample-nodejs-fact
https://github.com/alexa/skill-sample-nodejs-fact
https://aws.amazon.com/lambda/pricing
https://aws.amazon.com/lambda/pricing
http://numba.pydata.org/
https://couchdb.apache.org/
https://openwhisk.apache.org/documentation.html#deploy_kubernetes
https://openwhisk.apache.org/documentation.html#deploy_kubernetes
https://openwhisk.apache.org/
https://aws.amazon.com/lambda/

EuroSys ’22, April 5–8, 2022, RENNES, France Wonseok Shin, Wook-Hee Kim, and Changwoo Min

[16] Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca. From
warm to hot starts: Leveraging runtimes for the serverless era. In
Proceedings of the Workshop on Hot Topics in Operating Systems, page
58–64, Ann Arbor, Michigan, June 2021.

[17] Cloudflare. Cloudflare Docs - How Workers works, 2021. https://

developers.cloudflare.com/workers/learning/how-workers-works, vis-
ited 2021-05-18.

[18] docker. docker docs - Use the OverlayFS storage driver, 2021. https://
docs.docker.com/storage/storagedriver/overlayfs-driver, visited 2021-
05-18.

[19] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond startup
for serverless computingwith initialization-less booting. In Proceedings
of the 25th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), Lausanne,
Switzerland, March 2020.

[20] Firecracker. microVM Metadata Service, 2020. https://github.com/

firecracker-microvm/firecracker/blob/master/docs/mmds/mmds-

design.md, visited 2021-05-18.
[21] Firecracker. Network Connectivity for Clones, 2020.

https://github.com/firecracker-microvm/firecracker/blob/master/

docs/snapshotting/network-for-clones.md, visited 2021-05-18.
[22] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki

Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,
George Porter, and Keith Winstein. Encoding, fast and slow: Low-
latency video processing using thousands of tiny threads. In 14th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI), pages 363–376, 2017.
[23] Google. Cloud Functions, 2021. https://cloud.google.com/functions,

visited 2021-05-18.
[24] Google Cloud. Configuring Warmup Requests to Improve Perfor-

mance, 2020. https://cloud.google.com/appengine/docs/standard/

python/configuring-warmup-requests, visited 2021-05-18.
[25] gVisor Authors. gVisor User Guide, 2021. https://gvisor.dev/docs/user_

guide/install/, visited 2021-05-18.
[26] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,

Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and
JF Bastien. Bringing the web up to speed with webassembly. June
2017.

[27] Joseph M. Hellerstein, Jose M. Faleiro, Joseph E. Gonzalez, Johann
Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang
Wu. Serverless computing: One step forward, two steps back. CoRR,
abs/1812.03651, 2018.

[28] IBM Cloud. IBM Cloud Functions, 2021. https://cloud.ibm.com/

functions/, visited 2021-05-18.
[29] Jake Edge. A seccomp overview, 2015. https://lwn.net/Articles/656307/,

visited 2021-05-18.
[30] Jeremiah Spradlin and Zach Koopmans. gVisor Security Basics - Part 1,

2019. https://gvisor.dev/blog/2019/11/18/gvisor-security-basics-part-1,
visited 2021-05-18.

[31] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Jayant Yadwadkar, Joseph E. Gonzalez, Raluca Ada
Popa, Ion Stoica, and David A. Patterson. Cloud programming simpli-
fied: A berkeley view on serverless computing. CoRR, abs/1902.03383,
2019.

[32] Apache Kafra. Apache kafka quickstart, 2017. https://kafka.apache.
org/quickstart, visited 2021-05-18.

[33] Kenton Varda. Fine-grained sandboxing with v8 isolates, 2019. https:
//www.infoq.com/presentations/cloudflare-v8/, visited 2021-05-18.

[34] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. Pocket: Elastic ephemeral storage for
serverless analytics. In 13th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), pages 427–444, 2018.

[35] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a llvm-
based python JIT compiler. In Proceedings of the Second Workshop on

the LLVM Compiler Infrastructure in HPC, LLVM 2015, Austin, Texas,

USA, November 15, 2015, pages 7:1–7:6. ACM, 2015.
[36] Linux. smem - Linux man page, 2009. https://linux.die.net/man/8/

smem, visited 2021-05-18.
[37] Linux. Introduction to Linux Containers, 2021. https:

//access.redhat.com/documentation/en-us/red_hat_enterprise_

linux_atomic_host/7/html/overview_of_containers_in_red_hat_

systems/introduction_to_linux_containers, visited 2021-05-18.
[38] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang, Nikola Grcevski,

and Ding Yuan. Don’t get caught in the cold, warm-up your JVM:
Understand and eliminate JVM warm-up overhead in data-parallel
systems. In 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI), pages 383–400, 2016.
[39] Martin Maas, Krste Asanovic, and John Kubiatowicz. Return of the

runtimes: Rethinking the language runtime system for the cloud 3.0
era. In Alexandra Fedorova, Andrew Warfield, Ivan Beschastnikh, and
Rachit Agarwal, editors, Proceedings of the 16th Workshop on Hot Topics

in Operating Systems, HotOS, pages 138–143, 2017.
[40] Pascal Maissen, Pascal Felber, Peter G. Kropf, and Valerio Schiavoni.

Faasdom: a benchmark suite for serverless computing. In DEBS :

The 14th ACM International Conference on Distributed and Event-based

Systems, pages 73–84, 2020.
[41] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-

zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My
vm is lighter (and safer) than your container. In Proceedings of the 26th

Symposium on Operating Systems Principles, pages 218–233, 2017.
[42] Microsoft. Microsoft Azure, 2021. https://azure.microsoft.com/, visited

2021-05-18.
[43] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,

Naren Nayak, and Vadim Sukhomlinov. Agile cold starts for scalable
serverless. In 11th USENIXWorkshop on Hot Topics in Cloud Computing,

HotCloud, 2019.
[44] New Relic One. For the Love of Serverless: 2020 AWS Lambda

Benchmark Report for Developers, DevOps, and Decision Makers,
2020. https://newrelic.com/resources/ebooks/serverless-benchmark-

report-aws-lambda-2020, visited 2021-05-18.
[45] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,

Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. SOCK: Rapid
task provisioning with serverless-optimized containers. In USENIX

Annual Technical Conference (USENIX ATC), pages 57–70, 2018.
[46] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel

Madden. Starling: A scalable query engine on cloud functions. In
Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD, page 131–141. Association for Computing
Machinery, 2020.

[47] Mohammad Shahrad, Jonathan Balkind, and DavidWentzlaff. Architec-
tural implications of function-as-a-service computing. In Proceedings

of the 52nd Annual IEEE/ACM International Symposium on Microarchi-

tecture, MICRO, page 1063–1075, 2019.
[48] Mohammad Shahrad, Rodrigo Fonseca, Iñigo Goiri, Gohar Chaudhry,

Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider.
In Ada Gavrilovska and Erez Zadok, editors, USENIX Annual Technical

Conference, USENIX ATC, pages 205–218, 2020.
[49] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin

Recht, Ion Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram
Venkataraman. Serverless linear algebra. In Proceedings of the 11th

ACM Symposium on Cloud Computing, SoCC, page 281–295, 2020.
[50] Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation

for efficient stateful serverless computing. In Proceedings of the 2020

USENIX Annual Technical Conference (ATC), Boston, MA, July 2020.

676

https://developers.cloudflare.com/workers/learning/how-workers-works
https://developers.cloudflare.com/workers/learning/how-workers-works
https://docs.docker.com/storage/storagedriver/overlayfs-driver
https://docs.docker.com/storage/storagedriver/overlayfs-driver
https://github.com/firecracker-microvm/firecracker/blob/master/docs/mmds/mmds-design.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/mmds/mmds-design.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/mmds/mmds-design.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/snapshotting/network-for-clones.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/snapshotting/network-for-clones.md
https://cloud.google.com/functions
https://cloud.google.com/appengine/docs/standard/python/configuring-warmup-requests
https://cloud.google.com/appengine/docs/standard/python/configuring-warmup-requests
https://gvisor.dev/docs/user_guide/install/
https://gvisor.dev/docs/user_guide/install/
https://cloud.ibm.com/functions/
https://cloud.ibm.com/functions/
https://lwn.net/Articles/656307/
https://gvisor.dev/blog/2019/11/18/gvisor-security-basics-part-1
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://www.infoq.com/presentations/cloudflare-v8/
https://www.infoq.com/presentations/cloudflare-v8/
https://linux.die.net/man/8/smem
https://linux.die.net/man/8/smem
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/overview_of_containers_in_red_hat_systems/introduction_to_linux_containers
https://azure.microsoft.com/
https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020
https://newrelic.com/resources/ebooks/serverless-benchmark-report-aws-lambda-2020

Fireworks: A Fast, Efficient, and Safe Serverless Framework using VM-level post-JIT Snapshot EuroSys ’22, April 5–8, 2022, RENNES, France

[51] Vikram Sreekanti, Chenggang Wu, Saurav Chhatrapati, Joseph E. Gon-
zalez, Joseph M. Hellerstein, and Jose M. Faleiro. A fault-tolerance
shim for serverless computing. In Proceedings of the Fifteenth European

Conference on Computer Systems, EuroSys, 2020.
[52] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann

Schleier-Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. Cloudburst: Stateful functions-as-a-service. Proceedings of
the VLDB Endowment, 13(12):2438–2452, 2020.

[53] The gVisor Authors. gVisor Performance Guide, 2021. https://gvisor.
dev/docs/architecture_guide/performance/#file-system, visited 2021-
05-18.

[54] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. Benchmarking, analysis, and optimization of serverless
function snapshots. In Tim Sherwood, Emery Berger, and Christos
Kozyrakis, editors, ASPLOS : 26th ACM International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems,
pages 559–572, 2021.

[55] V8 Team. A lighter V8, 2019. https://v8.dev/blog/v8-lite.
[56] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,

Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. In-
finicache: Exploiting ephemeral serverless functions to build a cost-
effective memory cache. In 18th USENIX Conference on File and Storage

Technologies (FAST), pages 267–281, 2020.
[57] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Replayable execution

optimized for page sharing for a managed runtime environment. In
Proceedings of the Fourteenth EuroSys Conference, EuroSys, 2019.

[58] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking behind the curtains of serverless platforms. In
Proceedings of the 2018 USENIX Conference on Usenix Annual Technical

Conference, ATC, page 133–145, 2018.
[59] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and

Michael Swift. Peeking behind the curtains of serverless platforms.
pages 133–146. USENIX ATC, 2018.

[60] C.Wu, J. Faleiro, Y. Lin, and J. Hellerstein. Anna: A kvs for any scale. In
IEEE 34th International Conference on Data Engineering (ICDE), pages
401–412, 2018.

[61] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian
Lu, Pingchao Yang, Chenggang Qin, and Haibo Chen. Characterizing
serverless platforms with serverlessbench. In Proceedings of the 11th

ACM Symposium on Cloud Computing, SoCC, page 30–44, 2020.
[62] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. Narrowing

the gap between serverless and its state with storage functions. In
Proceedings of the ACM Symposium on Cloud Computing, SoCC, page
1–12, 2019.

677

https://gvisor.dev/docs/architecture_guide/performance/#file-system
https://gvisor.dev/docs/architecture_guide/performance/#file-system
https://v8.dev/blog/v8-lite

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 How a Serverless Platform Works
	2.2 Characteristics of a Serverless Workload
	2.3 Optimizing Serverless Platforms

	3 Fireworks Design
	3.1 Design Overview
	3.2 Automatic Source Code Annotation
	3.3 Creating a post-JIT VM Snapshot
	3.4 Invoking a Serverless Function
	3.5 Enabling Network Connectivity
	3.6 Taking Serverless Function Arguments

	4 Implementation
	5 Evaluation
	5.1 Evaluation Methodology
	5.2 FaaSdom Microbenchmark
	5.3 Real-World Serverless Applications
	5.4 Memory Usage
	5.5 Impact of VM-level Snapshot and post-JIT

	6 Discussion and Limitation
	7 Related Work
	8 Conclusion
	References

