
Birds of a Feather Flock Together: Scaling RDMA

RPCs with Flock

Sumit Kumar Monga
Virginia Tech

Sanidhya Kashyap
EPFL

Changwoo Min
Virginia Tech

Abstract

RDMA-capable networks are gaining traction with datacen-
ter deployments due to their high throughput, low latency,
CPU efficiency, and advanced features, such as remote mem-
ory operations. However, efficiently utilizing RDMA capabil-
ity in a common setting of high fan-in, fan-out asymmetric
network topology is challenging. For instance, using RDMA
programming features comes at the cost of connection scala-
bility, which does not scale with increasing cluster size. To
address that, several works forgo some RDMA features by
only focusing on conventional RPC APIs.
In this work, we strive to exploit the full capability of

RDMA, while scaling the number of connections regard-
less of the cluster size. We present Flock, a communication
framework for RDMA networks that uses hardware provided
reliable connection. Using a partially shared model, Flock
departs from the conventional RDMA design by enabling
connection sharing among threads, which provides signifi-
cant performance improvements contrary to the widely held
belief that connection sharing deteriorates performance. At
its core, Flock uses a connection handle abstraction for con-
nection multiplexing; a new coalescing-based synchroniza-
tion approach for efficient network utilization; and a load-
control mechanism for connections with symbiotic send-recv
scheduling, which reduces the synchronization overheads
associated with connection sharing along with ensuring fair
utilization of network connections. We demonstrate the ben-
efits for a distributed transaction processing system and an
in-memory index, where it outperforms other RPC systems
by up to 88% and 50%, respectively, with significant reduc-
tions in median and tail latency.

CCS Concepts: • Networks → Data center networks; •
Hardware → Networking hardware.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’21, October 26–29, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00
https://doi.org/10.1145/3477132.3483576

Keywords: Remote Memory Access, Network hardware

ACM Reference Format:

Sumit Kumar Monga, Sanidhya Kashyap, and Changwoo Min. 2021.
Birds of a Feather Flock Together: Scaling RDMA RPCs with Flock.
In ACM SIGOPS 28th Symposium on Operating Systems Principles

(SOSP ’21), October 26–29, 2021, Virtual Event, Germany. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3477132.3483576

1 Introduction

Network communication is one of the key ingredients in de-
termining the performance of datacenter applications. These
applications require good performance in the form of high
throughput and low latency from the network, which the
Remote Direct Memory Access (RDMA) capable networks
promise. These networks have not only become a commod-
ity but also are now part of datacenters. An RDMA-capable
network avoids the overhead of conventional network proto-
col stacks by bypassing them. Moreover, it provides reliable
one-sided reads and writes of remote memory that provides
off-the-shelf hardware-based reliable packet delivery and
no remote CPU involvement. Because of such performance
implications, large-scale distributed applications, such as
RPC-based systems for lower latency [14, 20, 41, 42] and
even resource disaggregation [13, 17, 32, 35] are using it.

Despite the popularity of RDMA, there is a long standing
debate on finding the balance between efficiently utilizing
the advanced capabilities of RDMA and scaling the number
of connections. In particular, several works use one-sided op-
erations over the reliable connection that ensures no packet
drop [13]. On the other hand, some works forgo this in the
favor of two-sided operations over unreliable datagram that
provides conventional RPC like APIs [20, 21] and scales to a
large number of nodes without any hardware issues, such as
cache thrashing on RDMA-capable NIC (RNIC). Meanwhile,
other works use the best of both worlds as they specialize
various algorithm phases (e.g., distributed transactions) with
particular RDMA operations [41].
Although one-sided operations do not involve remote

CPU, it comes at the cost of scalability bottleneck in hard-
ware. In particular, the RNIC, which maintains connection
information for each pair of connection, suffers from cache
thrashing because of its limited memory. Unfortunately, this
information can spill over the host memory resulting in a
huge penalty on a cache miss because RNIC has to fetch data
over the PCIe, which can be several microseconds. Mean-
while, developersminimize this thrashing by using unreliable
datagram (UD) that avoids pair-wise connection information.

212

https://doi.org/10.1145/3477132.3483576
https://doi.org/10.1145/3477132.3483576

Moreover, it becomes a suitable choice for high fan-in, fan-
out cluster scenarios [12, 22, 30]. However, this approach
leads to developers forgoing the hardware-provided reli-
able connection and they must ensure application reliability
and congestion control mechanisms that can impose addi-
tional overhead [21]. Moreover, unreliable datagram does
not support one-sided operations, which limits the design of
RDMA-enabled distributed applications.
In this work, we revisit the idea of sharing connections

among threads, especially in a high fan-in fan-out cluster [12,
30]. In particular, we advocate for a partially shared model—
sharing connections among threads—that earlier approaches
forgo, as the synchronization cost overshadows the benefits
of sharing a connection [13]. For instance, we find that a
lock-based connection sharing is up to 2.3× slower than our
approach. Thus, we tackle the problem of connection sharing
by designing a scalable RDMA communication framework
that focuses on three dimensions: First is maintaining the
scalability of connections regardless of the number of client
threads and nodes in a cluster. Second is versatility, i.e., al-
lowing users to leverage all the features of RDMA—such
as RPC, memory, and atomic operations—unlike RPC-only
frameworks [18, 20–22]. Finally, ensuring the packet relia-
bility from the ground up by using the hardware-provided
reliable connection that removes the software overhead of
congestion control and fault tolerance.
Thus, we design a new RDMA-based framework, called

Flock. With versatility and reliability as important design
goals, Flock relies on the hardware-supported reliable con-
nection (RC) that not only removes the aforementioned soft-
ware overheads but also supports all RDMA operations, such
as RPC, memory, and atomic.We particularly optimize Flock
for multi-threaded applications that are widely used within
datacenters [7, 40].
At its core, Flock uses a combination of three critical

components to maintain connection scalability, i.e., high
throughput and low latency, without RNIC cache thrashing
for a high fan-in, high fan-out network traffic pattern. First is
using an indirection layer, i.e., one more abstraction atop the
existing RDMA-based connection: queue pair (QP). We call
this connection handle abstraction that multiplexes applica-
tion threads with connections. We propose a programming
interface that exposes the setup and all RDMA operations.
Second, instead of using lock-based synchronization, we in-
troduce a new synchronization mechanism, called Flock
synchronization. It is based on a leader-follower coalescing-
based coordination, in which a thread becomes the leader and
coalesces requests from other concurrent threads (followers)
into a single message request. Our leader selection procedure
is dynamic and efficient. Thus, with our synchronization ap-
proach, we save more CPU cycles by reducing serialization
and even improve the network bandwidth utilization. Finally,
we avoid the cache thrashing with our symbiotic send-recv

scheduling by efficiently mapping connections to threads.

MTU size

One-sided verbs Two-sided verbs

read atomic write send/recv

RC 2 GB ✓ ✓ ✓ ✓
UC 2 GB ✗ ✗ ✓ ✓
UD 4 KB ✗ ✗ ✗ ✓

Table 1. RDMA operations and MTU sizes supported by each
transport type. In RC transport, the RNIC is responsible for re-
transmission following a packet loss. UC and UD do not use ACKs
for reliable packet delivery requiring packet loss to be handled by
the application. The MTU for UD is limited to 4KB and transferring
data larger than this requires splitting payload into 4KB chunks.
As packet reordering is possible in UD, application receiving the
data must handle packet reassembly.

Our approach consists of receiver-side connection schedul-
ing that controls which connection should be used by the
client threads by activating or deactivating them dynam-
ically to avoid cache thrashing on RNIC; and sender-side
thread scheduling that assigns threads to share an active
connection. This approach leads to minimizing head-of-line
blocking issue that arises due to varying message size as well
as better network bandwidth utilization.

This paper makes the following contributions:
• We address the problem of cache thrashing for the
reliable connection with: connection handle abstrac-
tion, leader-follower based synchronization mecha-
nism, and symbiotic send-recv scheduling.

• We design and implement a new RDMA communi-
cation library, called Flock, that ensures the goal of
achieving connection scalability, programming versa-
tility, and off-the-shelf hardware reliability.

• Our evaluation shows that Flock outperforms FaSST [20]
by up to 140% and 88% for distributed transaction pro-
cessing with a read-intensive and a write-intensive
workload respectively along with a reduction in 99th
percentile latency by up to 71% and 50% respectively.
Moreover, Flock delivers up to 50% throughput im-
provement and a reduction in 99th percentile latency
by up to 32% over eRPC [21] with HydraList [25].

2 Background and Motivation

We first briefly describe RDMA and RNIC (§2.1), then intro-
duce the challenges and research efforts in scaling RDMA
communication (§2.2). Finally, we summarize the RDMA scal-
ability challenges that we aim to solve in this paper (§2.3).
2.1 Remote Direct Memory Access (RDMA)

RDMA NIC (RNIC). RDMA enables a host to access the
memory of a remote host bypassing the kernel. This al-
lows zero-copy transfers with low latency and reduced CPU
consumption. To achieve these gains, RDMA NICs (RNICs)
implement several layers of network stack in hardware so
that applications can directly access the RNIC from user
space. Applications use RDMA by registering memory re-
gions (MRs) with the RNIC for remote access.

213

Queue pair (QP). An RDMA host establishes communica-
tion by creating queue pairs (QPs) wherein each QP consists
of a send queue and a receive queue. An application submits
requests (verbs) to these queues via a user-space library (i.e.,
libibverbs [2]). Each QP is associated with a completion
queue (CQ), which contains events indicating the completion
status of previously submitted verbs. The RNIC performs
the DMA of completion events onto the CQ, on which the
application polls.
Primitive types. RDMA supports two types of verbs namely,
message and memory verbs. Message verbs include send and
receive verbs. They require a receiver to post receive buffers
before a sender posts a send request. The sender’s payload
gets written to one of the receive buffers. Since these verbs re-
quire CPU involvement at both the sender and the receiver,
such verbs are called two-sided verbs. On the other hand,
memory verbs, which include read, write and atomic oper-
ations, are called one-sided verbs, since they do not involve
CPU on the remote host. The sender specifies the remote
memory address to operate upon in its request, which gets
executed by the RNIC on the remote host without consuming
any CPU. As a result, these verbs have lower latency and
higher throughput than message verbs.
Transport types. Current RDMA implementations offer
three transport types : reliable connection (RC), unreliable
connection (UC), and unreliable datagram (UD). Connected
transports like RC and UC require a one-to-one connection
between QPs, whereas UD enables one QP to communicate
with multiple remote QPs. Additionally, RC ensures reliable
packet delivery, unlike UC and UD. The transports also dif-
fer in the verbs supported by each of them as well as the
maximum transmission unit (MTU), which we summarize
in Table 1.

Thus, there are some advantages of using RC. First, it en-
ables access to the full suite of message and memory verbs,
thereby providing the opportunity for minimizing CPU us-
age at the remote host. Second, reliability provided by the
hardware reduces complexity and overheads in the software
stack. On the other hand, UC and UD transports lack these
benefits and hence require integrating reliability concerns
(e.g., packet loss/reordering) within the application in addi-
tion to their other limitations (e.g., limited MTU size).
2.2 Scalability in RDMA

Challenges. Scaling RC connection is challenging in large
clusters [8, 13, 20, 21, 32, 37, 39]. This stems from RNIC’s
inability to cache the state for all the connections handled by
it due to its limited size. Figure 1 illustrates that the RNIC uses
its SRAM to cache information, such as virtual-to-physical
address translation for the registered memory regions as well
as their permissions and the state corresponding to each of
its QPs. Unfortunately during cachemisses, RNIC issues PCIe
reads [13, 19] to fetch the necessary state from memory that
degrades performance. These observations have lead to a

M
em

or
y

...

...

...

QPs

MTT

...

...

MPT

...

...

C
PU

Core 1

Last Level Cache

Core 2 Core N. . .

RDMA State

R
N

ICNIC Cache

Memory Bus

PCIe

...

QP metadata
CCS
MTT
MPT

Figure 1. RDMA NIC (RNIC) Architecture. RNIC caches active
connection state – queue pair (QP) metadata, congestion control
state (CCS) [27, 43] – as well as the memory translation table (MTT)
and memory protection table (MPT). Upon NIC cache misses, RNIC
fetches the data from main memory via DMA over PCIe.

0
10
20
30
40

22 44 88 176 352 704 1408 2816
0
10
20
30
40

22 44 88 176 352 704 1408 2816

M
ill
io
n
op

s/
se
c

QPs

(a) RDMA read (RC)

senders

(b) RDMA RPC (UD)

Figure 2. Performance of RDMA read (RC) and UD-based RPC
with increasing number of QPs.

long debate over which RDMA transport and verbs should
be used for scalable communication with good performance.
RC-based approach. Systems, such as FaRM [13] and Storm
[32], use RC QPs to take advantage of the low latency and
CPU-efficient memory verbs. To tackle the scalability issue,
FaRM uses QP sharing between threads and registers mem-
ory regions using 2 GB huge pages. Storm, which uses recent
RNICs (Mellanox ConnectX-4) that are equipped with im-
proved cache management, registers physical memory to
eliminate the metadata needed by the RNIC for translating
virtual addresses to physical ones. However, the connection-
oriented nature of RC means the state RNIC caches will
increase as the cluster size increases, making it particularly
worse for high fan-in, high fan-out communication patterns.

To validate this, we run an experiment using Mellanox
ConnectX-5 NICs with 22 client nodes and one server node.
The clients issues 16-byte RDMA reads to the server. Fig-
ure 2(a) shows that the read performance peaks between
176-704 QPs followed by a sharp drop, as the number of QPs
increase further. This is due to the RNIC’s inability to cache
the state corresponding to all the connections.
UD-based approach. On the other hand, systems, such
as HERD [18], FaSST [20], and eRPC [21] use UD to com-
municate with multiple remote hosts using a single QP.1
Reduction in the number of QPs and QP-attached memory
regions translate to a significant reduction in the RNIC man-
aged state. However, UD has several drawbacks such as (1)
access to only message verbs which have high CPU cost;

1HERD uses a mix of UC and UD.

214

RPC
Region

Thread
Scheduler

Response
Dispatcher

App
Threads

Sender (Client)

N
od

e
1

N
od

e
N

...

Connectio
n Handle

QP
Scheduler

Memory
Region

RPC
Region

RPC
Region

Request
Dispatchers

Receiver (Server)

Active QP

Inactive QP

 ➁

 ➂

 ➄
 ➅

...

 ➀ request + demand

 ➃ response + credit

Figure 3. Flock architecture.

(2) software overheads as re-transmissions and congestion
control need to be handled in software (e.g., eRPC [21]).
Besides the congestion control overhead, Figure 2 shows

that performance gap can be up to 2×with high remote CPU
utilization. At 352 senders in Figure 2(b), the server consumes
more than 90% of its CPU cycles within the Mellanox user-
space libraries. Most of these cycles are spent on recycling
receive buffers (ibv_post_recv) and polling the completion
queue (ibv_poll_cq) for detecting incoming requests. Such
high CPU overheads lead to fewer cycles for application
processing.
Hybrid approach. Another class of systems use a hybrid of
message andmemory verbs. One such example is DrTM+H [41],
a distributed transaction processing system that uses differ-
ent types of verbs for different phases of a transaction. For
instance, DrTM+H uses a mix of one-sided reads and UD-
based RPC for the transaction execution phase. However,
their findings are limited to OLTP systems and may not
apply to other applications.
2.3 Challenges in Scaling RDMA Communication

Although latest RNICs have improved with better caching
and prefetching, they do not come with more memory prob-
ably because of cost factors and increased power consump-
tion [21]. Hence, we do not expect that the newer generation
of RNICs will not suffer from this scalability problem.

In summary, using RC is beneficial, as it allows flexibility
at the application to choose from different types of verbs
and provides reliability out-of-the-box without remote CPU
intervention. However scaling its performance for large con-
nection counts is imperative, which remains an open chal-
lenge. Our aim is to address this challenge with Flock.

3 Flock Overview

Flock aims to provide a scalable RDMA communication
framework targeting a challenging traffic pattern: a high fan-
in, high fan-out network that is commonly used in today’s
datacentres [12, 30]. Moreover, Flock exposes all RDMA
primitives—RPC and memory—to applications and mini-
mizes software-induced overheads [21] by utilizing off-the-
shelf hardware-supported reliable connection (RC). In addi-
tion, Flock departs from the conventional design of RDMA
stacks. For instance, we revisit the idea of QP sharing that is

known to suffer from synchronization overheads. Flock ad-
dresses this overhead and maintains scalable application per-
formance, i.e., high throughput and low latency, with three
contributions: a connection handle abstraction, coalescing-
based Flock synchronization, and a load-control mechanism
with symbiotic send-recv scheduling, comprising of sender-
side thread scheduling and receiver-side QP scheduling.
Figure 3 shows Flock in action. Each sender node and

receiver node are connected by QPs. After establishing the
connectionwith the connection handle abstraction, the sender
uses Flock synchronization to send requests, i.e., one of the
sender’s threads collects and coalesces a set of requests in
one message, which it sends to the server using an active QP.
The sender also asks for keeping the QP active with a credit
renewal scheme and provides other QP utilization metrics to
the server. After receiving the message, the server performs
two tasks: First, it uses the request dispatcher to process all
requests in the message (2). Second, it initiates the QP sched-
uler for QP scheduling, which activates/deactivates them
based on the received utilization metrics (3). The server
then responds back with processed requests as well as the
renewed credit if required (4). Once the sender receives
the response, its response dispatcher notifies appropriate
application threads (5). Now, the sender uses the thread
scheduler for sender-side thread scheduling, i.e., the thread
scheduler schedules/migrates threads from a deactivated QP
to an active one (6) based on the server response for credits.
Connection handle. To efficiently utilize QPs, we intro-
duce a connection handle abstraction on top of QPs that
allows multiple threads to share them. Table 2 lists Flock’s
major APIs, which we categorize into (1) connection set
up and memory region registration, (2) RPC client/server
(sender/receiver), and (3) memory APIs. The sender can is-
sue RPC and memory operations, while the receiver only
needs to handle incoming RPC requests because memory
operations do not consume any CPU on the receiver side.
Our programming API is based on the connection han-

dle, which establishes one-to-one connectivity between two
RDMA nodes, as illustrated in Figure 3. When a user estab-
lishes a connection to a remote node (fl_connect), Flock
creates a representative connection handle and all other APIs
operate on the connection handle to communicate to the re-
mote node. Internally, Flock manages a set of RC QPs for a
connection handle. Each connection handle attaches one or
more RDMA MRs (fl_attach_mreg), wherein separate MRs
are used for RPC and memory operations.

As for our implementation, Flock uses native OS threads.
It does not implement or depend on a specific thread li-
brary compared to prior works in high-performance net-
working [33, 34]. However, it can be easily extended to inte-
grate with a user-level thread library (e.g., §8.5.2).
Supported functionality. Our API currently supports the
most common operations including RPCs, remote memory

215

API Description

I
n
i
t fl_connect Connect to a remote node

fl_attach_mreg Attach a memory region for memory operations

R
P
C

c
l
i
e
n
t

fl_send_rpc Send an RPC request with an RPC ID and data
fl_recv_res Receive RPC responses

R
P
C

s
e
r
v
e
r fl_reg_handler Register an RPC handler function with an RPC ID

fl_recv_rpc Fetch RPC requests
fl_send_res Send an RPC response with data

M
e
m
o
r
y

A
t
o
m
i
c
s fl_read Read from a remote memory for a given size

fl_write Write to a remote memory for a given size
fl_fetch_and_add Atomically fetch data and add a remote memory
fl_cmp_and_swap Atomically compare and swap a remote memory

Table 2.Major Flock APIs.

verbs and atomics. Extending Flock to support more ad-
vanced functionality available in current RDMA implementa-
tions (e.g., cross-channel communication, extended atomics)
is part of our future work.
Summary. Our connection handle abstraction shares mul-
tiple threads with QPs, which implies sharing hardware
resources. Flock addresses this with its coalescing-based
Flock synchronization, in which threads that share a QP,
progress concurrentlywithminimal synchronization. In addi-
tion, our approach efficiently utilizes the network bandwidth
by coalescing small messages and further reduces the CPU
overhead. Meanwhile, our symbiotic send-recv scheduling
maintains a balance of QPs that avoids RNIC cache thrashing
on the server, while maintaining client’s performance.

4 Flock Remote Procedure Call

We describe the detailed design of Flock’s zero-copy RPC.
Flock registers a set of memory regions between nodes
after establishing the connection (fl_connect). We logically
create two ring buffers, a request buffer and a response buffer,
as shown in Figure 4. Clients prepare RPC requests in their
local request buffer (1), and then submit to the server’s
request buffer using RDMA writes (2). Subsequently, the
server dispatches the RPC requests from its local request
buffer (3), then it uses RDMA writes to send RPC response
from its local response buffer (4) to the client-side response
buffer (5). Finally, the client dispatches the RPC responses
from the local response buffer (6) and notifies application
threads (7).
Although this is a simple messaging primitive, the chal-

lenge is dynamically sharing a QP and its associated memory
region among application threads on the client side. Hence,
our RPC is designed to efficiently support the above de-
scribed messaging primitive. We first describe our message
layout and then present the key components powering our
RPC layer.
4.1 Message Layout

Figure 5 shows the message layout for both RPC request and
response. This layout enables coalescing of multiple small
requests (or responses) into a single larger message, trans-
ferring the coalesced message using a single RDMA write
(1 in Figure 5). Each message has four parts: the header

 ➀ Send
RPC requests

Coalesced
RPC Requests

Coalesced
RPC Responses

Coalesced
RPC Requests

Coalesced
RPC Responses

 ➁ RDMA write

RPC
Workers

 ➂ Fetch
RPC requests

 ➃ Send
RPC responses

 ➄ RDMA write

Response
Dispatcher ➅ Receive

RPC responses

 ➆ Notify RPC responses
App

Threads

R
P

C
 C

li
en

t
(S

en
d

er
)

R
P

C
 S

er
ve

r
(R

ec
ei

ve
r)

Request Ring Buffer Response Ring Buffer

Request
Dispatcher

Figure 4. Overview of Flock’s RPC.

(H), metadata (M), data (D), and canary (C). The header con-
tains information, such as total coalesced message length,
the number of requests (or responses) in the message, and
the expected canary value. The header is followed by one
or more pairs of metadata and data of individual requests
(or responses). Metadata contains the size of the associated
data, the thread ID, its sequence ID, and the RPC handler ID
to execute a request on the server with the request payload
(data). Sequence ID is a thread-local monotonically increas-
ing identifier that the server returns along with a response.
This allows one-to-one mapping between a thread’s out-
standing request and an incoming response. The canary is a
64-bit random value. The thread generates the canary and
places it in the header as well as the end of the message. The
receiver has the complete message if the canary matches at
both places, assuming RDMA writes are performed in order
of increasing memory addresses [13].

The receiver detects a new message by polling its request
buffer using the control variable Head (2 in Figure 5). Upon
receiving the message, the receiver first checks whether mes-
sage is complete through the canary value. It then updates
Head to point to the next message location. Finally, it de-
codes the message into individual requests with the number
of requests present in the message header.
Before sending a message, a sender ensures that there is

free space on the receiver’s ring buffer. For this, the receiver’s
Head is cached locally at the sender (i.e., sender’s copy of
Head), which it can fetch using an RDMA read. However, the
sender rarely reads because the receiver sends its updated
Head value as a part of the response message. This allows
the sender to update its Head without performing an RDMA
read.
4.2 Flock Synchronization

Since multiple threads share a QP, the major challenge lies
in efficiently utilizing the RNIC. To address this issue, we
employ a form of leader-follower coordination named Flock

216

Processed HFree Meta1 Data1 MetaN DataN C... H Meta1 Data1 Meta2 Data2 C Free

Head
(sender’s copy)

Processed H Meta1 Data1 MetaN DataN C... Free

Head (updated after
receiving a message)

 ➀ RDMA write

Left-to-right ordering

 ➁ Dispatcher polls on H and then
C to check the write completion.

Thread 1 Thread 2

Tail
(sender writes here)

 ➂ Leader ➃ Follower

Flock Tail

 ➄ RDMA write

Sender

Receiver

Free

...

➂ ➃

Thread Combining Queue (TCQ)

Figure 5. RPCmessage layout and message coalescing using Flock
synchronization.

synchronization for QP sharing. An application thread acting
as the leader coalesces RPC requests from other concurrent
threads—followers—and later issues an RDMA write for the
coalesced message.

To efficiently choose a leader in a dynamic fashion, Flock
maintains a thread combining queue (TCQ) for each QP (3 ,
4 in Figure 5). Each TCQ maintains a queue of concurrent
threads, where Flock Tail points to the queue tail. An ap-
plication thread first enqueues itself to the TCQ to access
a QP by updating Flock Tail using an atomic swap opera-
tion. The TCQ follows an update protocol similar to the MCS
queue lock [26]; If Flock Tail is null after the swap opera-
tion, the thread is at the head of the TCQ and it becomes a
leader (3). Otherwise, it becomes a follower (4).
A leader provides memory buffers to other concurrent

threads as per their requested payload. Every thread first
copies its payload into the provided buffer and updates its
copy-completion flag. The leader polls on each thread’s copy-
completion flag; once set, it finally sets up themessage header
and canary, and issues an RDMA write for the coalescedmes-
sage (5 in Figure 5). Note that the leader provides a bounded
number of buffers to the followers to ensure application-level
progress of the leader. On reaching this limit, the leader per-
forms the aforementioned steps of copying, coalescing, and
writing the message. It then hands over the leadership to
the first follower in the TCQ whose request is not part of
the coalesced message. We would like to emphasize that the
notion of an application thread being a leader or follower
in Flock is a transient one with a scalable leader selection
based on TCQ.

In Flock, the number of requests within a coalesced mes-
sage depends on the concurrent threads using a shared QP.
In the absence of concurrency, a coalesced message contains
only the request belonging to the leader. On the other hand,
coalescing in the company of concurrency comes with a cer-
tain synchronization cost but has several advantages to it
as well. Coalescing is beneficial because it reduces the num-
ber of MMIO operations required to submit RPC requests,

saving CPU cycles in the process (§8.3.1). Also, sending a sin-
gle large message can be more efficient than sending many
small messages since every message on the wire requires
additional metadata, such as network transport information.
Additionally, our message format (§4.1) requires per message
headers and canary. Thus, coalescing reduces the number
of bytes sent, thereby making more efficient use of network
bandwidth. To reduce contention on the shared resources,
the leader is responsible for polling completion events, in
addition to managing the request buffer.
4.3 Request Processing and Response Notification

The server registers an RPC handler for each RPC ID by
invoking fl_reg_handler during bootstrap. It detects new
coalesced messages containing RPC requests by polling its re-
quest buffer (2 in Figure 5). It then executes the RPC handler
corresponding to each request and prepares the response
in its response buffer, as shown in Figure 4. An application
can execute the request either with a RPC dispatcher thread
or with an application-managed pool of RPC workers. The
server tags the request sequence ID to its response meta-
data so the client can match a response to a corresponding
request with that ID. Similarly, thread ID is tagged to the re-
sponse metadata. As the message format used by the server
is similar to the one used at the client, RPC response are
also coalesced into larger messages. Moreover, the server
piggybacks its control variable Head along with the coalesced
response, which the server posts using an RDMA write.

Besides reducing the overhead of QP sharing among thre-
ads with our Flock synchronization (§4.2), we further reduce
contention on the response buffer to maintain RPC scala-
bility. As shown in Figure 4, we use a response dispatcher
thread that polls the response buffer and relays the available
response to appropriate application threads according to the
tagged thread ID in each response. Since application threads
access their respective response disjointly, the dispatcher en-
ables parallel data access to the response buffer as well as its
memory reclamation. A dispatcher thread does not interact
with the RDMA stack or is involved with application-specific
processing, making its job relatively lightweight. As a result,
it can work across multiple QPs thereby managing multiple
response buffers.

5 Flock Symbiotic Send-Recv Scheduling

Achieving good performance and scalability are goals that
require somewhat contrasting design choices particularly
with RC. Although threads using dedicated QPs enable more
parallelism within the RNIC [19], it hampers scalability in
a client-server setting with high fan-in, high fan-out com-
munication patterns. The reason is due to the RNIC cache
thrashing and CPU overload on the server (Figure 2). On the
other hand, sharing a QP among application threads at the
client improves connection scalability but comes at the cost
of performance [20, 21], which we also observe (§8.3.1).

217

Wepropose symbiotic send-recv scheduling to achieve these
two contrasting design goals. QPs at the server are catego-
rized into active and inactive so as to limit the number of
QPs actively served by the server. Flock distributes active
QPs among client threads based on their recent communi-
cation activity with the server. The approach of limiting
active QPs enables us to remain scalable with increasing
client count and Flock synchronization limits any perfor-
mance degradation caused due to QP sharing. On the client
side, Flock assigns active QPs to application threads that
mitigates head-of-line blocking.
5.1 Receiver-side QP Scheduling

Flock’s QP scheduler (Figure 3) on the server executes the
receiver-side QP scheduling algorithm, which minimizes
RNIC cache thrashing and server CPU overload. The sched-
uler activates or deactivates QPs based on the utilization
metrics exposed by clients. These metrics include a cooper-
ative credit renewal scheme and a contention metric on a
QP. Based on these metrics, the QP scheduler periodically
distributes QPs; i.e., it allocates more active QPs to contended
or active clients.
QP scheduler. The server runs a dedicated scheduler thread,
QP scheduler. QP scheduler is in charge of (1) handling (grant-
ing) credit renew requests, (2) updating QP utilization sta-
tistics based on the reported coalescing degree, and (3) peri-
odically redistributing QPs among the senders based on the
collected QP utilization statistics for each sender. QP sched-
uler assigns more QPs to senders that suffer from higher QP
contention and send requests more frequently. The sender,
particularly the leader (§4.2), requests for more credits as
well as shares the QP contention metric with the receiver.
Metric: Credit renewal. A credit represents the number
of requests a client can send to a receiver, which decreases
after posting the request. The credit system allows the sched-
uler to control the maximum QP load the server can handle.
Moreover, the scheduler issue credits on a per QP basis to
avoid cross-QP synchronization on both the sender and the
receiver. The renewal of credits works as follows: During
bootstrap, each sender gets C (default = 32) credits to initiate
its application processing. After consuming half of the cred-
its, a sender requests for C more credits to avoid any delay
after consuming the other half of its credits. The scheduler
can decline credit requests, which deactivates that QP for
both the sender and the receiver.
Metric: Coalescing degree as a QP contention metric.

The leader also reports the coalescing degree to the receiver.
Coalescing degree (> 1) represents the number of RPC re-
quests coalesced within a message, i.e., multiple threads
concurrently submitting requests, which indicates QP con-
tention. The QP scheduler tracks this metric on each QP and
activates more QPs to decrease contention. Moreover, the
leader also piggybacks this metric when requesting credits

from the receiver. Specifically, it reports the median of co-
alescing degree since last renew request, representing the
median of QP contention level.
QP assignment. To reflect these two factors—level of QP
contention and request frequency—in scheduling, we define
QP utilization of an active QP 𝑗 for sender 𝑖 denoted 𝑈𝑖, 𝑗 , as
the sum of the reported coalescing degrees in credit renew
requests since last QP redistribution. A higher 𝑈𝑖, 𝑗 means
either higher QP contention or frequent credit renewal re-
quests. We define𝑈𝑖 as the aggregated active QP utilization
for a sender 𝑖 , i.e., the sum of active QP utilization (𝑈𝑖, 𝑗).
Thus, in every scheduling interval, the QP scheduler re-

distributes active QPs to each sender 𝑖 based on its 𝑈𝑖 . It
categorizes the senders into functioning and dormant with
each sender starting in the functioning state and becoming
dormant if the client does not issue any request (i.e.,𝑈𝑖 = 0)
within a scheduling interval. Specifically, we determine the
number of active QPs (denoted 𝐴𝑄𝑃𝑖) for a sender 𝑖 as:

𝐴𝑄𝑃𝑖 =

𝑀𝐴𝑋_𝐴𝑄𝑃 ∗ 𝑈𝑖∑

𝑘∈𝑠𝑒𝑛𝑑𝑒𝑟𝑠 𝑈𝑘

, if𝑈𝑖 > 0

1, otherwise
(1)

where𝑀𝐴𝑋_𝐴𝑄𝑃 is the maximum QP count that the server
keeps active. The QP scheduler allows dormant senders to
have one QP for future communication. Moreover, if a new
client joins, it gets an average number of QPs per total func-
tioning senders. On the other hand, the QP scheduler en-
sures that only the set of active QPs continue to receive
credits, while dormant ones receive no credits from the next
scheduling interval. We choose 𝑀𝐴𝑋_𝐴𝑄𝑃 (256) to avoid
performance degradation caused by RNIC cache trashing
(see Figure 2).
5.2 Sender-side Thread Scheduling

As discussed in §5.1, once a QP becomes inactive, a sender
cannot use it for request processing. Thus, application threads
using the currently inactive QP should be migrated to an
active QP. The thread scheduler enables this migration via
sender-side thread scheduling approach.
Thread scheduler. A sender node runs a dedicated sched-
uler thread that assigns application threads to QPs. Similar
to receiver-side scheduling, the thread scheduler does three
tasks: (1) it collects the statistics of application thread be-
havior; (2) it assigns application threads to new active QPs;
and (3) it also notifies those threads who have a different
assignment of a QP. Before sending any requests using the
new QP, these threads ensure that all requests sent using
their old QP are completed and all responses have been re-
ceived. We avoid the request-response inconsistency using
the sequence ID (§4.1), which enables mapping a thread’s
outstanding requests to their corresponding responses.
Scheduling goals. When deciding the assignment of appli-
cation threads to QPs, the thread scheduler maintains two
optimization objectives: First, the scheduler tries to avoid

218

Algorithm 1:Mapping sender threads to active QPs
threads: an array of threads sorted first by the

median request size and second by the
number of request sent since last scheduling

total_bytes: total data sent since last scheduling
tq_map :a map from a thread to an assigned QP

1 quota = total_bytes
number of active QPs , qp_id = 0, qp_load = 0

2 for thread T in threads do
3 qp_load += total data sent by thread T since last

scheduling
4 tq_map[T] = qp_id
5 if qp_load >= quota then
6 qp_id ++, qp_load = 0
7 endif

8 end

head-of-line blocking at the RPC layer by minimizing the
placement of a thread with a large payload with a smaller
one on the same QP. This is important because co-locating
threads with small payloads increase the coalescing oppor-
tunities and it reduces (1) MMIO operations used for posting
work requests and (2) the number of messages sent over the
network, thereby saving bytes for transmitting network and
our message-specific headers. Meanwhile, such advantages
are insignificant for large payloads. Finally, the scheduler
tries to use all active QPs fairly. This results in minimizing
the overall QP contention by making all active QPs process
a similar amount of data.
Mapping threads to QPs. Finding an optimal assignment
that achieves all of our scheduling goals is a challenging
combinatorial optimization problem. In algorithm 1, we in-
troduce an approximate algorithm that tries to finish the
thread-QP assignment in linear time—𝑂 (𝑛) where 𝑛 is the
number of application threads. The scheduler maintains the
median request size, total requests sent, and total data sent
for each thread since the last scheduling. We assign applica-
tion threads to active QPs first based on the thread’s median
request size and then the number of requests sent since the
last scheduling (threads in algorithm 1) to mitigate the head-
of-line blocking problem. For each QP, we limit the number
of threads based on the load (qp_load), which is the sum
of data transferred by the assigned threads. This approach
enables each QP to process an almost similar amount of
data (quota at Line 5). For a new application thread, which
does not have any request statistics, the scheduler randomly
decides the QP assignment initially. We then update this
assignment during the next scheduling interval if a QP gets
deactivated.

6 FlockMemory and Atomic Operations

The RDMA’s RC transport natively supports memory oper-
ations, such as one-sided reads, writes, and atomic. Since

Flock relies on the RC transport, it also provides program-
ming APIs for them (Table 2). Similar to RPC, these oper-
ations also use the connection handle abstraction, Flock
synchronization, and integrate with our symbiotic schedul-
ing. In conjunction with RPC, a thread performing memory
operations should explicitly register a set of memory regions
(MRs) using our fl_attach_mreg API. This API attaches an
MR to a QP for memory operations later.
These memory operations differ from RPC in two places.

The first is during the send phase, specifically the Flock syn-
chronization protocol. During this phase, each application
thread prepares its work individually usingwork requests [1].
Later, all followers delegate the job of posting requests to
the leader, which first links these work requests together
and then issues the relevant memory operations. The sec-
ond is the receive phase. Unlike RPC, there is no associated
response for memory operations. Thus, application threads
rely on separate completion events to check for their request
completion. In summary, if multiple threads, which share the
same QP, perform both RPC and memory operations, Flock
ensures handling them separately by annotating operations
with different work requests IDs, then polling on respective
completion events and finally delivering the response back to
appropriate threads. Specifically, we use the work request id
(wr_id [1]) in the work request and its completion event for
annotating operations and checking its completion. These
complexities are hidden under our programming interface.

Memory operations integrate with our symbiotic schedul-
ing similarly to RPC. For receiver-side QP scheduling, the
client uses the coalescing degree representing the number
of concurrent memory operations submitted as an indicator
of QP contention. At the client, we track the number as well
as the size of read/write requests to decide the QP to thread
assignment as part of our sender-side thread scheduling.

7 Implementation

We implement Flock in C/C++ with the core library con-
sisting of about 8,000 lines of code. We now mention two
implementation-level optimizations in Flock.

Besides centralizing both the buffer management and com-
pletion handling (§4.2), we use selective signaling [19] for ef-
ficient RNIC utilization. A signaled or an unsignaled RDMA
work request indicates whether the RNIC will enqueue a
completion event after completing the request. We can se-
lect at most N-1 consecutive unsignaled work requests out
of N. Since the leader posts requests, it exclusively handles
the signaling of work requests. This results in a significant
reduction in the number of completion entries DMA-ed by
the RNIC, saving PCIe bandwidth as well as extra processing
by the RNIC.
As part of our symbiotic send-recv scheduling, a sender

uses RDMA write-with-imm verb to acquire credits from
the receiver. In addition to updating remote memory, this
verb generates a completion event in the receive completion

219

0

10

20

30

40

50

1 2 4 8 16 32 48
0

10

20

30

40

50

60

1 2 4 8 16 32 48
0

10

20

30

40

50

60

70

1 2 4 8 16 32 48

M
ill
io
n
op

s/
se
c

(a) Outstanding req = 1

Flock
eRPC

threads per client (23 clients)

(b) Outstanding req = 4 (c) Outstanding req = 8

Figure 6. Throughput for Flock and eRPC

queue (RCQ) on the remote node. The QP scheduler at the
receiver polls the RCQ to detect new credit requests from
senders. The choice of using RDMA writes for submitting
requests and write-with-imm for renewing credits by the
sender is beneficial. At the receiver, application requests are
detected by polling memory whereas polling RCQ is used
to check for credit requests. This avoids synchronization
between the RPC request dispatcher threads and the QP
scheduler thread, while working on the same QP.

8 Evaluation

We evaluate Flock by answering the following questions:
• Can Flock achieve better performance (i.e., higher through-
put and lower latency) than the state-of-the-art RDMA
RPC-based systems, especially eRPC [21]? (§8.2)

• How effective is Flock’s symbiotic send-recv scheduling
compared to a simple QP sharing approach [13]? (§8.3)

• Can Flock scale to a large number of machines? (§8.4)
• What is the impact of Flock’s RPC layer on real world
applications: a distributed transaction processing system
(§8.5) and a network ordered key-value store (§8.6)?

8.1 Evaluation Environment

We use 24 nodes from the Cloudlab d6515 cluster [3, 15].
Each node has a 32-core AMD 7452 2.35 GHz CPU, 128 GB
RAM, and a Mellanox ConnectX-5 100Gbps NIC. A Dell
Z9264F-ON 100 Gbps switch connects these nodes. Each
node is running Ubuntu 18.04 on the Linux kernel version
4.15.0. We used Mellanox OFED 5.0-1.0.0.0 for RDMA drivers
and user-space libraries. The Maximum Transmission Unit
(MTU) used across all nodes in our evaluations is 4096 bytes.
For Flock evaluation, we set an upper bound of 256 QPs
(𝑀𝐴𝑋_𝐴𝑄𝑃), which avoids NIC cache thrashing (Figure 2(a))
unless stated otherwise.
8.2 Comparison with the state-of-the-art

We compare the throughput and latency of Flockwith eRPC,
a state-of-the-art RDMA RPC system, which utilizes UD to
remain scalable with increasing connection counts. We use
one server and 23 clients, and vary the number of applica-
tion threads on clients with the server using all its physical
cores. The workload consists of 64-byte RPC request and

0

20

40

60

80

100

1 2 4 8 16 32 48
0
50
100
150
200
250
300
350
400

1 2 4 8 16 32 48
0

100
200
300
400
500
600
700
800

1 2 4 8 16 32 48

La
te
nc
y
(𝜇
s)

(a) Outstanding req = 1

threads per client (23 clients)

(b) Outstanding req = 4

Flock med
eRPC med

(c) Outstanding req = 8

Figure 7.Median latency for Flock and eRPC

0

20

40

60

80

100

1 2 4 8 16 32 48
0

100

200

300

400

1 2 4 8 16 32 48
0

200

400

600

800

1 2 4 8 16 32 48
La
te
nc
y
(𝜇
s)

(a) Outstanding req = 1

threads per client (23 clients)

(b) Outstanding req = 4

Flock 99%
eRPC 99%

(c) Outstanding req = 8

Figure 8. 99th percentile latency for Flock and eRPC

response. To increase the load at the server, we allow ap-
plication threads at the client to keep multiple outstanding
requests with the server. Figures 6, 7 and 8 show the through-
put, median latency and 99th percentile latency, respectively.
With one outstanding request, both systems have com-

parable performance up to four threads because of minimal
load on the server. As we increase the number of threads per
client, eRPC performance saturates at 16 threads with a sharp
increase in latency at 32 threads. This happens because the
server CPU becomes the bottleneck; i.e., the server recycles
receive buffers and polls the completion queue for incoming
requests. This behavior is in line with our prior observation
in §2.2. Meanwhile, Flockmaintains scalability with increas-
ing thread count by effectively sharing QPs among threads.
For example, with 16 threads per client, the QP scheduler
multiplexes a total of 368 (23×16) threads among 256 QPs.
Moreover, because of its coalescing-based synchronization,
Flock further enables parallelism at high thread count, as
more threads efficiently submit requests concurrently. For
example, Figure 6 shows that throughput improves by 25%
and 47%, when we increase thread count from 16 to 32 and
then from 32 to 48, respectively. Overall, Flock improves
throughput by 1.25×–3.4× in comparison to eRPC. In terms
of latency, eRPC has equal or slightly better latency up to
four threads per client. Increasing the thread count leads to
latency spikes in eRPC with 2× worse median latency and
1.5× worse 99th percentile latency at 32 threads.

Increasing the server load, with multiple outstanding re-
quests per thread at the client, improves throughput in Flock,
but at the cost of increased latency. However, eRPC suffers
worse, besides showing performance improvement up to

220

0

10

20

30

40

50

60

70

1 2 4 8 16 32 48

M
ill
io
n
op

s/
se
c

threads per client (23 clients)

Flock
No sharing (1 thread/QP)

FaRM sharing (2 threads/QP)
FaRM sharing (4 threads/QP)

Figure 9. Comparison of RPC performance in different QP shar-
ing approaches: Flock synchronization based QP scheduling, no
sharing (per-thread QP), and FaRM-like QP sharing using spinlock
wherein 2 or 4 threads share a QP, respectively.

eight threads. For example, at high thread count, the through-
put with four or eight outstanding requests remains similar
to one request with increased latency. That is, with multiple
outstanding requests, Flock decreases the median latency
by 2.9× and 3.9× at 32 and 48 threads, respectively.
8.3 Effectiveness of Symbiotic Send-Recv Scheduling

8.3.1 Receiver-side QP Scheduling To understand the
effectiveness of receiver-side QP scheduling, we compare
how QP sharing approaches affect the performance and scal-
ability of RPC. In particular, we compare two configurations:
(1) no sharing: each thread in a client has a dedicated QP;
and (2) FaRM [13]-like QP sharing: 2 or 4 threads share a
QP using a spinlock. For a fair comparison, these two con-
figurations also implement RPC using two RDMA writes.
We use one node as the server and 23 nodes as clients. The
number of application threads is varied from 1 up to 48 at the
clients with each thread submitting 64-byte RPC requests to
the server. Each thread keeps 8 outstanding requests with
the server. At the server, all physical cores are used to han-
dle incoming requests and the server replies with a 64-byte
response. Figure 9 shows the results.
Up to eight threads, Flock shows similar performance

with the no sharing setting, although it has additional op-
erations, such as QP and thread scheduling and Flock syn-
chronization. Note that Flock does not experience any QP
sharing up to eight threads in our cluster because the to-
tal QP count (184 QPs = 23×8) is less than the threshold
(𝑀𝐴𝑋_𝐴𝑄𝑃 = 256 QPs). As a result, no coalescing takes
place up to eight threads and the observed median and 99th
percentile latency for Flock and the no sharing config are
similar. At 16 threads, Flock has slightly better throughput
than other approaches because of its QP scheduling. For
instance, the no sharing setting requires 368 QPs (23×16),
whereas Flock limits QPs to 256. The no sharing approach
consumes more CPU for polling the QPs at the server. Still it
does not suffer from cache thrashing, as shown in Figure 2.
On the other hand, FaRM-like sharing reduces the polling
overhead but each thread submit its request individually,
which does not provide any gains possible from coalescing.

0

10

20

30

40

50

60

512B 768B 1024B

M
ill
io
n
op

s/
se
c

large payload size

Without sender-side thread scheduling
With sender-side thread scheduling (Flock)

Figure 11. Performance impact of sender-side thread scheduling.

At 32 and 48 threads, because of its coalescing, Flock
outperforms other configurations by at least 62% and 133%,
respectively. At the same time, Flock’s 99th percentile la-
tency is 27% and 49% lower than the no sharing config at 32
and 48 threads, respectively. Meanwhile QP sharing using
spinlock performs similarly to the no sharing config. With
coalescing, the number of messages sent by the clients to
the server is reduced with a similar effect in the opposite
direction as the server also coalesces the RPC responses into
larger messages. This further leads to low CPU utilization
at the server due to reduced polling overhead and MMIO
operations.

0
10
20
30
40
50
60
70

1 4 8

M
ill
io
n
op

s/
se
c

outstanding requests per thread

Without coalescing
With coalescing

Figure 10. Coalescing impact.

We quantify the ef-
fect of coalescing with
each client running 32
threads and running Flock
with and without coa-
lescing (see Figure 10).
With one outstanding
request per thread, co-
alescing achieves 1.4×
better throughput. On
average, the server re-
ceives 1.56 requests within
one coalesced message, which allows coalescing similar num-
ber of responses. With one MMIO operation for every 1.56
responses, CPU cycles on MMIO operations reduce by 36%.
Also, detecting multiple requests in one go reduces the time
spent by the server on polling ring buffers, thereby freeing up
cycles for executing the application logic. Finally, coalescing
enables better network utilization as it reduces the number
of packets, which saves packet headers. These advantages of
coalescing are more pronounced when threads keep multiple
outstanding requests. With four and eight requests, coalesc-
ing improves throughput by 1.7× with the server receiving
about 1.7 and 2 requests per message, respectively.

8.3.2 Sender-side Thread Scheduling We evaluate the
impact of sender-side thread scheduling with the following
workload, in which 10% of threads submit large RPC requests,
while 90% of threads issue small RPC (64 bytes) to the server,
whose response is 64 bytes. The evaluation setup is the same

221

0

5

10

15

20

25

30

35

40

23 46 92 184 368
0

50

100

150

200

250

23 46 92 184 368
0

50

100

150

200

250

300

350

400

23 46 92 184 368

M
ill
io
n
op

s/
se
c

(a) Throughput
1 thrd/1 QP

La
te
nc
y
(𝜇
s)

clients

(b) Median latency
2 thrds/1 QP

(c) 99th percentile latency
2 thrds/2 QPs

Figure 12. Node scalability in Flock varying the numbers of
threads and QPs in a client.

as §8.3.1, with each client running 32 threads. For the case
without the server-side thread scheduling, two threads share
the same QP. Figure 11 shows that the thread scheduler
improves the throughput up to 1.5× with similar latency for
varying payload sizes for the large RPC. The thread scheduler
effectively groups thread with smaller RPCs using one QP,
while it dedicates other QPs to handle large payloads. On
the other hand, sharing QPs among threads without our
approach leads to head-of-line blocking, thereby reducing
performance.
8.4 Node Scalability in Flock

In §8.2 and §8.3, we evaluated Flock using multi-threaded
clients with the client count fixed at 23. Since multi-threaded
applications are common [7, 40], Flock is helped by its
coalescing-based design in multi-threaded settings. We now
turn our attention to evaluating Flock’s scalability as the
number of clients increase.

To simulate a large number of clients in our 24-node clus-
ter, we used one node for the server and spawned an increas-
ing number of client processes on the rest of the 23 nodes.We
consider two configurations in this evaluation, one wherein
each process uses a single application thread and another in
which every process uses two application threads. In the first
configuration (1 thrd/1 QP in Figure 12), coalescing is not
possible, so this effectively presents the worst-case scenario
for Flock. For the second configuration, we further consider
two settings wherein each client process uses 2 application
threads, either using separate QPs (2 thrds/2 QPs) or sharing
a QP among threads (2 thrds/1 QP). This configuration in
effect presents a comparison of Flock against native RC QPs.
As each machine has 32 physical cores, we limit the maxi-
mum number of client processes per machine to 16, resulting
in a maximum client count of 368 (23×16). All physical cores
at the server are used for handling client requests. Similar to
§8.3.1, clients submit 64-byte requests and each application
thread keeps 8 outstanding requests with the server. The
server replies with a 64-byte response. Figure 12 shows the
performance results.
With 1 application thread per process (1 thrd/1 QP), coa-

lescing is not possible, so throughput saturates at 46 clients

and is bottlenecked on the packet rate. However, the ob-
served performance is expected due to a lack of coalesc-
ing which is the primary reason for performance improve-
ments in multi-threaded settings. To compare node scalabil-
ity against eRPC, we use their performance results from §8.2.
As eRPC does not use QP sharing or coalescing, their perfor-
mance is dependent only on the number of senders irrespec-
tive of a multi-threaded or multi-process setting. Flock’s
throughput is at least 74% higher with lower median and
99th percentile latency. At 368 clients, the median and 99th
percentile latency in Flock is 51% and 25% lower than eRPC,
respectively.

With 2 application threads per process, we evaluatewhether
coalescing in Flock can deliver better performance than na-
tive RC while using fewer QPs. As shown in Figure 12, a
shared QP among the 2 threads (2 thrds/1 QP) delivers supe-
rior throughput and lower latency than each thread using a
dedicated QP (2 thrds/2 QPs) across all client counts. Between
46 and 368 clients, the throughput improvement ranges be-
tween 10%-30% with similar reductions in 99th percentile
latency. These results demonstrate that Flock can deliver
better performance while using fewer QPs per machine, al-
lowing it to scale better than native RC.
8.5 FlockTX: Distributed Transactions with Flock

We first present the design of a Flock based distributed
transaction system, called FlockTX, that uses optimistic
concurrency control (OCC), two-phase commit (2PC), and
primary-backup replication (§8.5.1). Later, we compare it
with FaSST [20] using two workloads (§8.5.2).

8.5.1 Design of FlockTX We implement a distributed
transaction processing system using Flock for communica-
tion between clients and servers. We use a partitioned and
replicated key-value store at the servers. A server executes
transactions on the stored key-value pairs. It provides trans-
actions with serializability whenmultiple key-value pairs are
involved within a transaction. A transaction submitted by
a coordinator at the client executes in multiple phases. Our
transaction protocol is similar to FaSST [20], as it also uses
optimistic concurrency control (OCC) and two-phase commit
(2PC) with primary-backup replication for high availability.
Figure 13 shows our transaction protocol. R and W denote
two keys read and written within a transaction, respectively.
Below we describe the various phases of a transaction.

1) Execution: The coordinator reads the key-value items
in R and W by sending RPCs to servers. The server tries to
lock the keys in W. If failed, it leads to transaction abort. The
server returns the key-value pair information for both the
read and write set along with the address for keys in R.
2) Validation: The coordinator uses RDMA reads (i.e.,

fl_read) to verify the versions for keys in R using the ad-
dress returned in the execution phase. If the version of a
key is modified or the key is locked, validation fails and the
transaction is aborted.

222

Execution Validation Logging Commit
C

P1
R1
R2[]

replica
set for P1

P2
R1
R2[]

replica
set for P2

R

lock W

serialization
point

update
the replicas

update and
unlock W

R

W

Figure 13. Distributed transaction involving two keys R and W. C,
P, and R stand for the coordinator, the primary and the replica.

3) Logging: The updates to keys in W are first sent to the
replicas by posting RPCs to them. The replicas send ACKs to
the coordinator after applying updates. This way, a replica
ensures the update ordering as the primary.
4) Commit: After receiving ACKs from the replicas, the

coordinator sends RPCs to the primary servers containing
the updated values for the keys in the write set. The primary
servers apply updates and then unlocks these keys.

8.5.2 Evaluation of FlockTX We compare FlockTXwith
FaSST, which provides distributed transactions with scalabil-
ity via optimized RPCs over UD. For a fair comparison, we
use MICA [23], the same key-value store used in FaSST, and
do not cache key-value pairs. As transactions need multiple
rounds of communication with a server, we also use corou-
tines to hide the network latency as FaSST. We use 3 server
nodes and 20 client nodes2 for our evaluation. Servers use
3-way replication. Thus, each server acts as the primary for
one partition and is a replica for the other two. We use two
benchmarks for evaluation: (1) TATP [29], a read-intensive
OLTP benchmark simulating telecom database consisting
of 70% single key reads, 10% multi-key reads with the rest
of transactions updating keys; (2) Smallbank [6], a write-
intensive benchmark simulating bank account transactions
with 85% of transactions updating keys.
(1) TATP. We use the same setup as that of FaSST: each
server uses one million subscribers, and each client and
server use an equal number of threads. A client only com-
municates with its peer thread at the server. Each thread
at the client uses 20 coroutines of which 19 are used to
submit requests and one is used for processing incoming
responses. This is a challenging traffic pattern, as there are
380 senders3 submitting transactions to each server thread.
Figure 14 shows throughput and latency results. Although,
FaSST is slightly better than Flock up to four threads, its
performance saturates at four threads, and the latency dra-
matically increases at higher thread counts. On the other
hand, Flock’s throughput increases with more threads. Al-
though FaSST requires extra CPU cycles due to UD, it still

2We are able to use 23 nodes in total due to a faulty node in the cluster.
3# senders = # clients (20) × # sender coroutines per thread (19)

0

10

20

30

40

50

1 2 4 8 16 32
0

50

100

150

200

1 2 4 8 16 32
0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32

M
ill
io
n
op

s/
se
c

(a) Throughput

Flock
FaSST

La
te
nc
y
(𝜇
s)

threads per client (20 clients, 3 servers)

(b) Median latency (c) 99th percentile latency

Figure 14. Throughput and median & 99th percentile latency for
TATP between Flock and FaSST.

0

5

10

15

20

1 2 4 8 16
0

100

200

300

400

1 2 4 8 16
0

200

400

600

800

1 2 4 8 16
M
ill
io
n
op

s/
se
c

(a) Throughput

Flock
FaSST

La
te
nc
y
(𝜇
s)

threads per client (20 clients, 3 servers)

(b) Median latency (c) 99th percentile latency

Figure 15. Throughput and median & 99th percentile latency for
Smallbank in Flock and FaSST.

maintains a constant load per-server core. However, its per-
formance drop is primarily due to the increased network
traffic. Flock minimizes the network traffic thanks to its
coalescing-based synchronization. Up to eight threads, there
is no coalescing on the client, as the QP count is 160 (20×8)
and coroutines of a single thread do not coalesce. However,
server coalesces response for coroutines in a larger message,
which reduces the number of packets sent to the clients.

At 16 threads, the server maintains a constant number
of QPs (256), which allows coalescing between coroutines
of threads sharing a QP, thereby amplifying the benefit of
coalescing. As a result, Flock’s throughput is about 1.9×
and 2.4× as that of FaSST at 8 and 16 threads respectively.
Similarly, Flock has superior latency than FaSST especially
at high thread counts. We omit the 32-thread results for
FaSST as some client coroutines do not make progress, which
is considered as a packet loss in their RPC implementation.
(2) Smallbank. We use the same FaSST configuration in
our evaluation. At each server node, we use 100,000 bank
accounts per thread. The workload generated by clients is
such that 4% of the total accounts are accessed by 90% of
transactions. Each thread at the client runs 20 coroutines.
Figure 15 presents the performance results. The throughput
of Flock and FaSST are similar up to two threads. How-
ever even with a single thread, the 99th percentile latency of
FaSST is higher than Flock: 178 𝜇s and 126 𝜇s. This trend is
different from TATP because Smallbank is write-intensive.
With write-intensive workloads, server threads have more

223

0

5

10

15

1 2 4 8 16 32
0

5

10

15

20

25

1 2 4 8 16 32
0

5

10

15

20

25

1 2 4 8 16 32

M
ill
io
n
op

s/
se
c

(a) Outstanding req = 1

threads per client (22 clients)

(b) Outstanding req = 4

Flock
eRPC

(c) Outstanding req = 8

Figure 16. HydraList performance for Flock and eRPC with 90%
get and 10% scan operations.

0

20

40

60

80

100

1 2 4 8 16 32
0

100

200

300

400

1 2 4 8 16 32
0

100

200

300

400

500

600

1 2 4 8 16 32

La
te
nc
y
(𝜇
s)

(a) Outstanding req = 1

threads per client (22 clients)

(b) Outstanding req = 4

Flock get
eRPC get

(c) Outstanding req = 8

Flock scan
eRPC scan

Figure 17.Median latency for get and scan operations in HydraList
with Flock and eRPC.

0

20

40

60

80

100

1 2 4 8 16 32
0

100

200

300

400

1 2 4 8 16 32
0

100

200

300

400

500

600

1 2 4 8 16 32

La
te
nc
y
(𝜇
s)

(a) Outstanding req = 1

threads per client (22 clients)

(b) Outstanding req = 4

Flock get
eRPC get

(c) Outstanding req = 8

Flock scan
eRPC scan

Figure 18. 99th percentile latency for get and scan operations in
HydraList with Flock and eRPC.

work to do as a successful write transaction requires replicat-
ing the information on all three servers. With four and eight
threads per node, Flock outperforms FaSST by up to 24%
and 88% in throughput, respectively. It has similar improve-
ments in median and tail latency. Apart from the lower CPU
overheads at the server, these improvements are possible due
to our Flock synchronization. At 16 threads, FaSST faces
packet loss.
8.6 HydraList over Flock

HydraList [25] is a recent in-memory index optimized for
multi-core machines. Using HydraList, we ran a single node
index populated with 32 million key-value pairs using 8B
keys and 8B values. 22 client nodes 4 submit 90% get (lookup)
and 10% scan queries using either Flock or eRPC. The scan
queries use a range of 64 where the server replies with the
number of keys found as an 8B response.We vary the number

4This setup uses 23 nodes in total due to 1 faulty node in the cluster.

of threads on clients while all physical cores are used at
the server to handle and respond to incoming requests. To
increase the load on the server, application threads keep
multiple outstanding requests with the server. Figures 16, 17,
and 18 show the performance results.

With one outstanding request per thread, eRPC’s through-
put is similar or slightly better than Flock up to eight threads.
With 16 threads per client, the total QP count increases to
352 (22×16) on the server, which initiates QP sharing on the
clients. However, as each thread uses a single outstanding
request, there is little chance of coalescing on the clients due
to variable service times for the get and scan queries, result-
ing in a performance drop. At 32 threads, Flock performs
slightly better than eRPC due to increased coalescing, which
overshadows the synchronization cost.
Increasing the load at the server by enabling multiple

outstanding requests leads to better performance in Flock
for all thread counts except at 16 threads where Flock and
eRPC have similar performance. This behavior stems from
the limited coalescing happening at 16 threads, similar to our
result with one outstanding request. At 32 threads, Flock
outperforms eRPC by 1.4×, with lower median and 99th
percentile latency for both get and scan queries.

9 Discussion

Applicability to future hardware. The next generation
of RNIC hardware may come with larger caches. Also, recent
works, such as Scale-out NUMA [31] and RPCValet [11], tar-
get on-die integration of RNIC, thereby eliminating the PCIe
overhead experienced by current RNICs. On the other hand,
the core count per processor (socket) is already reaching up
to 128 hardware threads [4, 5] and will continue to grow
further given the current trend. These trends point towards
a future where the scalability limitations of today’s RNICs
might be less eligible. However, we believe that the key ideas
of our system, namely Flock synchronization and symbiotic
send-recv scheduling will remain effective given both the
CPU and RNIC trend. As Figure 9 depicts, increasing the num-
ber of connections does not always result in an equivalent
increase in performance. However, Flock is able to deliver
performance improvement when constrained to fewer QPs
by reducing the number of packets exchanged due to its
more efficient network utilization. This in turn allows better
CPU utilization due to reduced polling overheads and MMIO
operations. With the network improving at a much faster
rate than the CPU, reducing the cycles spent processing per
packet is imperative to make efficient use of the network.
As a result, co-optimizing the network and CPU becomes
more important than ever. Addressing connection scalability
in vanilla RDMA hardware along with co-optimizing the
network and CPU have been our two primary objectives in
this work.

224

Generalizability. Although Flock is based on RC, we be-
lieve our contributions are applicable to UD as well. Our
evaluation shows that UD suffers from high CPU overheads
with majority of time spent within the network stack. While
a reduction in the number of small packets via coalescing
allows for better network utilization, it will also reduce the
CPU cycles spent within the network stack benefiting appli-
cation processing.
Support for multiple applications. We have designed
and optimized Flock for multi-threaded applications in this
work. While it can support multiple applications, this has
not been our focus. However, Flock can be extended to sup-
port multiple applications and multi-tenancy using a similar
approach as Snap [24]. Specifically, a central user-space pro-
cess that manages network resources and allocates them
to application processes as per their utilization is a poten-
tial starting design which bears similarities to our current
scheduling mechanism. 1RMA [36] is another recent system
targeted at supporting multi-tenancy for RDMA networks
within datacenters. Drawing insights from prior work, we
will further investigate and support multi-tenancy as part of
our future work.

10 Related Work

Scalability limitations of RDMA. Improving RDMA scal-
ability is a problem that has lead to a large body of work [8,
13, 18, 20, 21, 32, 36, 39, 41]. FaRM [13] is an RDMA-based
distributed computing platform which uses 2GB hugepages
and lock-based QP sharing to address the scalability chal-
lenge. Our design of a lock-free and coalescing-based QP
sharing is inspired by them. LITE [39] targets data center
applications and provides a kernel indirection layer to in-
corporate security with RDMA. It uses physical addresses
to register memory regions so as to avoid RNIC cache pres-
sure. We believe our load-control mechanism for connection
sharing can allow better hardware and network utilization
in these systems. ScaleRPC [8] uses a time-sharing approach
to limit the number of QPs served by the RNIC at any time.
This requires additional coordination when communicating
with multiple remote nodes, thereby increasing tail latency.

HERD [18], FaSST [20] and eRPC [21] use UD for its inher-
ent scalability. However, the high CPU overheads involved
leaves fewer cycles for application processing resulting in
performance saturating with fewer senders. We believe that
forgoing CPU-efficient one-sided verbs is the missing feature
in these systems which enables effective utilization of RNIC
as well as CPU.
1RMA [36] is a recent system designed to address the

RDMA scalability limitations in multi-tenant data centers. It
re-architects the NIC hardware for a connectionless design,
enabling it to overcome the limitations of standard RDMA
including connection scalability, FIFO operation execution

order, and close coupling of security policies with connec-
tions. The one-shot requests and solicited data transfers in
1RMA facilitates scaling to a large number of nodes along
with first-class support for multi-tenancy. In comparison,
our work focuses on overcoming the connection scalabil-
ity in vanilla RDMA hardware while being performant and
efficiently utilizing the network bandwidth.
Dynamically Connected Transport (DCT) [10] from Mel-

lanox is another solution designed to tackle the challenges
posed by connection scalability. DCT is still connection-
oriented but dynamically creates and destroys queue pairs
to limit the number of active connections. Although trans-
parent to the application, frequently switching a connection
to communicate with multiple remote machines lead to per-
formance degradation as noted by prior studies [20, 38].
Credit-based scheduling in network. Receiver-driven
transports like pHost [16], Homa [28] use a credit scheme at
the receiver to grant credits to the sender before it submits
a request. These systems are targeted at handling network
congestion. Breakwater [9] provides an RPC library on top
of TCP which uses a similar scheme to avoid overload at the
server. Server provides credits to the clients from a global
pool representing the maximum load it can handle which
allows the server to maintain latency SLOs. Inspired by these
systems, Flock uses a credit-based receiver-driven scheme
to decide the allocation of QPs to the sender nodes.

11 Conclusion

We present Flock, a communication library that balances
the performance-scalability trade-off in RDMA fan-in fan-
out networks. Flock revisits the idea of QP sharing using
three contributions. Flock adds an indirection in the form
of connection handle abstraction to multiplex QPs among
threads. It uses a leader-follower synchronizationmechanism
that enables QP sharing among threads with low overhead,
delivering performance improvement through efficient net-
work utilization and reduced CPU overheads. This is comple-
mented by symbiotic send-recv scheduling, the key enabler
for controlling the maximum client load at the server as well
as ensuring fair utilization of QPs. Our extensive evaluation
shows significant performance improvements for distributed
transaction processing and an in-memory index structure,
which opens the door for rethinking the existing RDMA
stacks.

Acknowledgements

We thank the anonymous reviewers and our shepherd, Adam
Belay for their comments and suggestions to improve the
paper. We appreciate Cloudlab [15] for providing the evalua-
tion platform. This work was supported in part by Institute
for Information & communications Technology Promotion
(IITP) grant funded by the Korea government (MSIT) (No.
2014-3-00035).

225

References

[1] Infiniband Architecture Specification, Volume 1. https://cw.
infinibandta.org/document/dl/8567.

[2] RDMA Core Userspace Libraries and Daemons. https://github.com/
linux-rdma/rdma-core.

[3] The Cloud Lab Manual: 12. Hardware. https://docs.cloudlab.us/
hardware.html.

[4] AMD Unveils EPYC Milan 7003 CPUs, Zen 3 comes to 64-Core
server chips. https://www.tomshardware.com/news/amd-unveils-
epyc-milan-7003-cpus-zen-3-comes-to-64-core-server-chips, 2021.

[5] ARM puts some muscle into future Neoverse server CPU de-
signs. https://www.nextplatform.com/2021/04/27/arm-puts-some-
muscle-into-future-neoverse-server-cpu-designs/, 2021.

[6] Mohammad Alomari, Michael J. Cahill, Alan D. Fekete, and Uwe Röhm.
The Cost of Serializability on Platforms That Use Snapshot Isolation.
In Proceedings of the 24th International Conference on Data Engineer-

ing, ICDE 2008, April 7-12, 2008, Cancún, Mexico, pages 576–585. IEEE
Computer Society, 2008.

[7] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang
Chen, Beng Chin Ooi, Kian-Lee Tan, Yong Meng Teo, and ShengWang.
Efficient distributed memory management with rdma and caching.
Proceedings of the VLDB Endowment, 11(11):1604–1617, 2018.

[8] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable RDMA RPC on
reliable connection with efficient resource sharing. In Proceedings of

the Fourteenth EuroSys Conference 2019, pages 1–14, 2019.
[9] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Al-

izadeh, and Adam Belay. Overload control for 𝜇s-scale rpcs with
breakwater. In 14th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 20), pages 299–314, 2020.
[10] Diego Crupnicoff, Michael Kagan, Ariel Shahar, Noam Bloch, and Hillel

Chapman. Dynamically-connected transport service, 2012. US Patent
8,213,315.

[11] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. Rpcvalet:
Ni-driven tail-aware balancing of 𝜇s-scale rpcs. In Proceedings of the

Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 35–48, 2019.
[12] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications

of the ACM, 56(2):74–80, 2013.
[13] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and

Orion Hodson. FaRM: Fast remote memory. In Proceedings of the 11th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI), pages 401–414, Seattle, WA, March 2014.
[14] Aleksandar Dragojevic, Dushyanth Narayanan, Edmund B Nightin-

gale, Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. No compromises: distributed transactions with consistency,
availability, and performance. In Proceedings of the 25th ACM Sympo-

sium on Operating Systems Principles (SOSP), pages 54–70, Monterey,
CA, October 2015.

[15] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design and operation
of cloudlab. In 2019 USENIX Annual Technical Conference (ATC 19),
pages 1–14, 2019.

[16] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia
Ratnasamy, and Scott Shenker. pHost: Distributed near-optimal dat-
acenter transport over commodity network fabric. In Proceedings of

the 11th ACM Conference on Emerging Networking Experiments and

Technologies, pages 1–12, 2015.
[17] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,

and Kang G. Shin. Efficient Memory Disaggregation with Infiniswap.
In 14th USENIX Symposium on Networked Systems Design and Im-

plementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages

649–667. USENIX Association, 2017.
[18] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA

efficiently for key-value services. In Proceedings of the 2014 ACM

conference on SIGCOMM, pages 295–306, 2014.
[19] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design guide-

lines for high performance rdma systems. In 2016 USENIX Annual

Technical Conference (ATC 16), pages 437–450, 2016.
[20] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast,

Scalable and Simple Distributed Transactions with Two-Sided RDMA
Datagram RPCs. In Proceedings of the 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI), pages 185–201,
Savannah, GA, November 2016.

[21] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Datacenter
RPCs can be General and Fast. In Proceedings of the 16th USENIX

Symposium on Networked Systems Design and Implementation (NSDI),
pages 1–16, Boston, MA, February 2019.

[22] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. R2p2: Making rpcs first-class datacenter citizens. In 2019

USENIX Annual Technical Conference (USENIX ATC 19), pages 863–880,
2019.

[23] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. MICA: A Holistic Approach to Fast In-memory Key-value Storage.
In Proceedings of the 11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI), pages 429–444, Seattle, WA, March
2014.

[24] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C Evans, Steve Gribble, et al. Snap: A microkernel approach
to host networking. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles (SOSP), pages 399–413, Ontario, Canada,
October 2019.

[25] Ajit Mathew and Changwoo Min. Hydralist: a scalable in-memory
index using asynchronous updates and partial replication. Proceedings
of the VLDB Endowment, 13(9):1332–1345, 2020.

[26] John MMellor-Crummey and Michael L Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Transac-

tions on Computer Systems (TOCS), 9(1):21–65, 1991.
[27] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Has-

san Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David
Wetherall, and David Zats. Timely: Rtt-based congestion control for
the datacenter. ACM SIGCOMM Computer Communication Review,
45(4):537–550, 2015.

[28] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. Homa: A receiver-driven low-latency transport protocol using
network priorities. In Proceedings of the 2018 Conference of the ACM

Special Interest Group on Data Communication, pages 221–235, 2018.
[29] Simo Neuvonen, Antoni Wolski, Markku manner, and Vilho Raatikka.

Telecom Application Transaction Processing Benchmark. http://
tatpbenchmark.sourceforge.net/.

[30] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, et al. Scaling memcache at facebook. In 10th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 13), pages
385–398, 2013.

[31] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. Scale-out numa. ACM SIGPLAN Notices, 49(4):3–18,
2014.

[32] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli, Michael Cui, Yiying
Zhang, Haggai Eran, Boris Pismenny, Liran Liss, Michael Wei, Dan
Tsafrir, et al. Storm: a fast transactional dataplane for remote data
structures. In Proceedings of the 12th ACM International Conference on

Systems and Storage, pages 97–108, 2019.
[33] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and

Hari Balakrishnan. Shenango: Achieving High CPU Efficiency for

226

https://cw.infinibandta.org/document/dl/8567
https://cw.infinibandta.org/document/dl/8567
https://github.com/linux-rdma/rdma-core
https://github.com/linux-rdma/rdma-core
https://docs.cloudlab.us/hardware.html
https://docs.cloudlab.us/hardware.html
https://www.tomshardware.com/news/amd-unveils-epyc-milan-7003-cpus-zen-3-comes-to-64-core-server-chips
https://www.tomshardware.com/news/amd-unveils-epyc-milan-7003-cpus-zen-3-comes-to-64-core-server-chips
https://www.nextplatform.com/2021/04/27/arm-puts-some-muscle-into-future-neoverse-server-cpu-designs/
https://www.nextplatform.com/2021/04/27/arm-puts-some-muscle-into-future-neoverse-server-cpu-designs/
http://tatpbenchmark.sourceforge.net/
http://tatpbenchmark.sourceforge.net/

Latency-sensitive Datacenter Workloads. In Proceedings of the 16th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI), pages 361–378, Boston, MA, February 2019.
[34] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-

hout. Arachne: Core-aware thread management. In Proceedings of the

13th USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI), pages 145–160, Carlsbad, CA, October 2018.
[35] Yizhou Shan, YutongHuang, Yilun Chen, and Yiying Zhang. LegoOS: A

Disseminated, Distributed OS for Hardware Resource Disaggregation.
In 13th USENIX Symposium on Operating Systems Design and Imple-

mentation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, pages
69–87. USENIX Association, 2018.

[36] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas FWenisch, Monica
Wong-Chan, Sean Clark, Milo MK Martin, Moray McLaren, Prashant
Chandra, Rob Cauble, et al. 1rma: Re-envisioning remote memory
access for multi-tenant datacenters. In Proceedings of the Annual

conference of the ACM Special Interest Group on Data Communication on

the applications, technologies, architectures, and protocols for computer

communication, pages 708–721, 2020.
[37] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yong-

wei Wu. Rfp: When rpc is faster than server-bypass with rdma. In
Proceedings of the Twelfth European Conference on Computer Systems,
pages 1–15, 2017.

[38] Hari Subramoni, Khaled Hamidouche, Akshey Venkatesh, Sourav
Chakraborty, and Dhabaleswar K Panda. Designing mpi library with

dynamic connected transport (dct) of infiniband: early experiences. In
International Supercomputing Conference, pages 278–295, 2014.

[39] Shin-Yeh Tsai and Yiying Zhang. Lite kernel rdma support for dat-
acenter applications. In Proceedings of the 26th ACM Symposium on

Operating Systems Principles (SOSP), pages 306–324, Shanghai, China,
October 2017.

[40] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui.
Apus: Fast and scalable paxos on rdma. In Proceedings of the 2017

Symposium on Cloud Computing, pages 94–107, 2017.
[41] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. Decon-

structing RDMA-enabled distributed transactions: Hybrid is better! In
Proceedings of the 13th USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI), pages 233–251, Carlsbad, CA, October
2018.

[42] Wei, Xingda and Shi, Jiaxin and Chen, Yanzhe and Chen, Rong and
Chen, Haibo. Fast in-memory transaction processing using rdma and
htm. In Proceedings of the 25th ACM Symposium on Operating Systems

Principles (SOSP), pages 87–104, Monterey, CA, October 2015.
[43] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina

Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang. Congestion control for large-scale
rdma deployments. ACM SIGCOMM Computer Communication Review,
45(4):523–536, 2015.

227

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Remote Direct Memory Access (RDMA)
	2.2 Scalability in RDMA
	2.3 Challenges in Scaling RDMA Communication

	3 Flock Overview
	4 Flock Remote Procedure Call
	4.1 Message Layout
	4.2 Flock Synchronization
	4.3 Request Processing and Response Notification

	5 Flock Symbiotic Send-Recv Scheduling
	5.1 Receiver-side QP Scheduling
	5.2 Sender-side Thread Scheduling

	6 Flock Memory and Atomic Operations
	7 Implementation
	8 Evaluation
	8.1 Evaluation Environment
	8.2 Comparison with the state-of-the-art
	8.3 Effectiveness of Symbiotic Send-Recv Scheduling
	8.4 Node Scalability in Flock
	8.5 FlockTX: Distributed Transactions with Flock
	8.6 HydraList over Flock

	9 Discussion
	10 Related Work
	11 Conclusion
	References

