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Unikernels
Presentation (2)

Unikernel: application + dependencies + thin OS compiled
as a static binary running on top of a hypervisor

I single-*
I Single purpose: run 1 application
I Single process
I Single binary and single address space for application + kernel

I No user/kernel protection needed
I Lightweight virtualization, alternative to containers

I Security advantage: small attack surface and high isolation
I Per-application tailored kernel

I LibOS/Exokernel model
I Reduced OS noise, increased performance

I Low system call latency
I App + kernel in ring 0, system calls are function calls

3/11



Unikernels
Presentation (2)

Unikernel: application + dependencies + thin OS compiled
as a static binary running on top of a hypervisor

I single-*
I Single purpose: run 1 application
I Single process
I Single binary and single address space for application + kernel

I No user/kernel protection needed

I Lightweight virtualization, alternative to containers
I Security advantage: small attack surface and high isolation

I Per-application tailored kernel
I LibOS/Exokernel model

I Reduced OS noise, increased performance
I Low system call latency

I App + kernel in ring 0, system calls are function calls

3/11



Unikernels
Presentation (2)

Unikernel: application + dependencies + thin OS compiled
as a static binary running on top of a hypervisor

I single-*
I Single purpose: run 1 application
I Single process
I Single binary and single address space for application + kernel

I No user/kernel protection needed
I Lightweight virtualization, alternative to containers

I Security advantage: small attack surface and high isolation

I Per-application tailored kernel
I LibOS/Exokernel model

I Reduced OS noise, increased performance
I Low system call latency

I App + kernel in ring 0, system calls are function calls

3/11



Unikernels
Presentation (2)

Unikernel: application + dependencies + thin OS compiled
as a static binary running on top of a hypervisor

I single-*
I Single purpose: run 1 application
I Single process
I Single binary and single address space for application + kernel

I No user/kernel protection needed
I Lightweight virtualization, alternative to containers

I Security advantage: small attack surface and high isolation
I Per-application tailored kernel

I LibOS/Exokernel model

I Reduced OS noise, increased performance
I Low system call latency

I App + kernel in ring 0, system calls are function calls

3/11



Unikernels
Presentation (2)

Unikernel: application + dependencies + thin OS compiled
as a static binary running on top of a hypervisor

I single-*
I Single purpose: run 1 application
I Single process
I Single binary and single address space for application + kernel

I No user/kernel protection needed
I Lightweight virtualization, alternative to containers

I Security advantage: small attack surface and high isolation
I Per-application tailored kernel

I LibOS/Exokernel model
I Reduced OS noise, increased performance

I Low system call latency
I App + kernel in ring 0, system calls are function calls

3/11



Unikernels
The Issue

I Unikernels have plenty of benefits to bring

I Unikernels have plenty of application domains

I They are very popular in academia . . .

I . . . but why (nearly) nobody uses them in the industry?

Because it is hard to port existing applications!
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The Issue: Porting to Unikernels

Application 
src

Unikernel & 
libraries src

Build
(compile, 
link, etc.)

Unikernel
binary

Execution

I Proprietary software → source code not available
I Incompatible language
I Unsupported features
I Porting is hard, needs knowledge about both application and

unikernel
I Complex build toolchains

HermiTux Solution
I A unikernel binary-compatible with Linux

I For x86-64 for now
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I Load-time Stack
layout

I Syscalls

I Kernel adapted
from HermitCore

I Complete/partial
support for 80+
syscalls

I How to maintain unikernel benefits without access to
the application sources?

I Fast system calls and modularity
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Unikernels
Fast Syscalls with Libc Substitution

I HermiTux’s syscall handler is invoked by the syscall
instruction

I Reintroduce high latency for system calls due to the world
switch

I For dynamically compiled programs:
I At runtime load a unikernel-aware Libc

I Making for system calls (fast) function calls directly into the
kernel

I Automatically transformed version of Musl Libc with Coccinelle
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Unikernels
Fast Syscalls with Binary Rewriting

I What about static binaries?
I (Statically) binary-rewrite syscall instructions to direct
jumps to the syscall implementation

I Problem: syscall is 2 bytes long and any call/jmp
instruction will be larger

mov   %r10, %rcx
callq 0x200457  (read)
mov   $2, %esi
jmp   0x400aac

Original code

Rewritten code Snippet

…
mov $0, %rax (read)

mov $3, %rdi
…

…
jmp 0x200042
nop
nop
mov $3, %rdi
…

(5 bytes)
(1 byte)
(1 byte)

Syscall binary rewriting
jmp 0x200042
nop
nop

(5 bytes)
(1 byte)
(1 byte)

syscall 
mov $2, %esi (5 bytes)

(2 bytes)
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Unikernels
System-call-based Modularity

I System-call based modularity
I Compile a kernel with support for only the necessary system

calls
I How to identify syscall needed without access to the sources?

I Use binary analysis to find out what is the value in %rax for
each syscall invocation

Program
Number of 
system calls

Kernel .text 
size reduction

Minimal 5 21.87 %

Hello world 10 19.84 %

PARSEC Blackscholes 15 17.05 %

Postmark 26 14.36 %

Sqlite 31 11.34 %

Full syscalls support 64 00.00 %
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Legend: Low isolation (software or none) Strong isolation (EPT) Binary compatible with Linux Not Binary compatible with Linux

Binary Size Boot + Destruction time RAM
usage

I Image 650x smaller, boot time 780x faster, RAM usage 9x
lower than a Linux VM!
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Conclusion

I Porting to unikernels is hard
I Hinders their adoption in the industry

I HermiTux provides binary-compatibility with Linux
applications

I HermiTux maintains unikernel benefits:
I Fast boot times, small footprints
I Various techniques to get fast system calls and modularity

It’s open source, try it out!
https://ssrg-vt.github.io/hermitux/
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