
A Binary Compatible Unikernel

Pierre Olivier*, Daniel Chiba*, Stefan Lankes+, Changwoo Min*,
Binoy Ravidnran*

*Virginia Tech, +RWTH Aachen University

VEE’19 - 04/14/2019

Unikernels
Presentation

Application

Libraries

OS interface
used

Linux
distribution

Linux
Kernel

Hypervisor

Hardware

Full-fledged Virtual Machine

2/11

Unikernels
Presentation

Application

Libraries

OS interface
used

Linux
distribution

Linux
Kernel

Hypervisor

Hardware

Full-fledged Virtual Machine

Legend :
Useful software

Software bloat

2/11

Unikernels
Presentation

Application

Libraries

OS interface
used

Linux
distribution

Linux
Kernel

Hypervisor

Hardware

Application

Libraries

OS Layer

Full-fledged Virtual Machine

Unikernel

Legend :
Useful software

Software bloat

2/11

Unikernels
Presentation (2)

Unikernel: application + dependencies + thin OS compiled
as a static binary running on top of a hypervisor

I single-*
I Single purpose: run 1 application
I Single process
I Single binary and single address space for application + kernel

I No user/kernel protection needed
I Lightweight virtualization, alternative to containers

I Security advantage: small attack surface and high isolation
I Per-application tailored kernel

I LibOS/Exokernel model
I Reduced OS noise, increased performance

I Low system call latency
I App + kernel in ring 0, system calls are function calls

3/11

Unikernels
Presentation (2)

Unikernel: application + dependencies + thin OS compiled
as a static binary running on top of a hypervisor

I single-*
I Single purpose: run 1 application
I Single process
I Single binary and single address space for application + kernel

I No user/kernel protection needed

I Lightweight virtualization, alternative to containers
I Security advantage: small attack surface and high isolation

I Per-application tailored kernel
I LibOS/Exokernel model

I Reduced OS noise, increased performance
I Low system call latency

I App + kernel in ring 0, system calls are function calls

3/11

Unikernels
Presentation (2)

Unikernel: application + dependencies + thin OS compiled
as a static binary running on top of a hypervisor

I single-*
I Single purpose: run 1 application
I Single process
I Single binary and single address space for application + kernel

I No user/kernel protection needed
I Lightweight virtualization, alternative to containers

I Security advantage: small attack surface and high isolation

I Per-application tailored kernel
I LibOS/Exokernel model

I Reduced OS noise, increased performance
I Low system call latency

I App + kernel in ring 0, system calls are function calls

3/11

Unikernels
Presentation (2)

Unikernel: application + dependencies + thin OS compiled
as a static binary running on top of a hypervisor

I single-*
I Single purpose: run 1 application
I Single process
I Single binary and single address space for application + kernel

I No user/kernel protection needed
I Lightweight virtualization, alternative to containers

I Security advantage: small attack surface and high isolation
I Per-application tailored kernel

I LibOS/Exokernel model

I Reduced OS noise, increased performance
I Low system call latency

I App + kernel in ring 0, system calls are function calls

3/11

Unikernels
Presentation (2)

Unikernel: application + dependencies + thin OS compiled
as a static binary running on top of a hypervisor

I single-*
I Single purpose: run 1 application
I Single process
I Single binary and single address space for application + kernel

I No user/kernel protection needed
I Lightweight virtualization, alternative to containers

I Security advantage: small attack surface and high isolation
I Per-application tailored kernel

I LibOS/Exokernel model
I Reduced OS noise, increased performance

I Low system call latency
I App + kernel in ring 0, system calls are function calls

3/11

Unikernels
The Issue

I Unikernels have plenty of benefits to bring

I Unikernels have plenty of application domains

I They are very popular in academia . . .

I . . . but why (nearly) nobody uses them in the industry?

Because it is hard to port existing applications!

4/11

Unikernels
The Issue

I Unikernels have plenty of benefits to bring

I Unikernels have plenty of application domains

I They are very popular in academia . . .

I . . . but why (nearly) nobody uses them in the industry?

Because it is hard to port existing applications!

4/11

Unikernels
The Issue: Porting to Unikernels

Application
src

Unikernel &
libraries src

Build
(compile,
link, etc.)

Unikernel
binary

Execution

I Proprietary software → source code not available
I Incompatible language
I Unsupported features
I Porting is hard, needs knowledge about both application and

unikernel
I Complex build toolchains

HermiTux Solution
I A unikernel binary-compatible with Linux

I For x86-64 for now

5/11

Unikernels
The Issue: Porting to Unikernels

Application
src

Unikernel &
libraries src

Build
(compile,
link, etc.)

Unikernel
binary

Execution

I Proprietary software → source code not available

I Incompatible language
I Unsupported features
I Porting is hard, needs knowledge about both application and

unikernel
I Complex build toolchains

HermiTux Solution
I A unikernel binary-compatible with Linux

I For x86-64 for now

5/11

Unikernels
The Issue: Porting to Unikernels

Application
src

Unikernel &
libraries src

Build
(compile,
link, etc.)

Unikernel
binary

Execution

I Proprietary software → source code not available
I Incompatible language

I Unsupported features
I Porting is hard, needs knowledge about both application and

unikernel
I Complex build toolchains

HermiTux Solution
I A unikernel binary-compatible with Linux

I For x86-64 for now

5/11

Unikernels
The Issue: Porting to Unikernels

Application
src

Unikernel &
libraries src

Build
(compile,
link, etc.)

Unikernel
binary

Execution

I Proprietary software → source code not available
I Incompatible language
I Unsupported features

I Porting is hard, needs knowledge about both application and
unikernel

I Complex build toolchains

HermiTux Solution
I A unikernel binary-compatible with Linux

I For x86-64 for now

5/11

Unikernels
The Issue: Porting to Unikernels

Application
src

Unikernel &
libraries src

Build
(compile,
link, etc.)

Unikernel
binary

Execution

I Proprietary software → source code not available
I Incompatible language
I Unsupported features
I Porting is hard, needs knowledge about both application and

unikernel

I Complex build toolchains

HermiTux Solution
I A unikernel binary-compatible with Linux

I For x86-64 for now

5/11

Unikernels
The Issue: Porting to Unikernels

Application
src

Unikernel &
libraries src

Build
(compile,
link, etc.)

Unikernel
binary

Execution

I Proprietary software → source code not available
I Incompatible language
I Unsupported features
I Porting is hard, needs knowledge about both application and

unikernel
I Complex build toolchains

HermiTux Solution
I A unikernel binary-compatible with Linux

I For x86-64 for now

5/11

Unikernels
The Issue: Porting to Unikernels

I Proprietary software → source code not available
I Incompatible language
I Unsupported features
I Porting is hard, needs knowledge about both application and

unikernel
I Complex build toolchains

HermiTux Solution
I A unikernel binary-compatible with Linux

I For x86-64 for now

5/11

Unikernels
Overview

I Linux ABI
convention:

I ELF loader
convention

I Load-time Stack
layout

I Syscalls

I Kernel adapted
from HermitCore

I Complete/partial
support for 80+
syscalls

I How to maintain unikernel benefits without access to
the application sources?

I Fast system calls and modularity

6/11

Unikernels
Overview

I Linux ABI
convention:

I ELF loader
convention

I Load-time Stack
layout

I Syscalls

I Kernel adapted
from HermitCore

I Complete/partial
support for 80+
syscalls

I How to maintain unikernel benefits without access to
the application sources?

I Fast system calls and modularity

6/11

Unikernels
Overview

I Linux ABI
convention:

I ELF loader
convention

I Load-time Stack
layout

I Syscalls

I Kernel adapted
from HermitCore

I Complete/partial
support for 80+
syscalls

I How to maintain unikernel benefits without access to
the application sources?

I Fast system calls and modularity

6/11

Unikernels
Overview

 Host: Linux kernel

Hypervisor: uHyve

KVM

I Linux ABI
convention:

I ELF loader
convention

I Load-time Stack
layout

I Syscalls

I Kernel adapted
from HermitCore

I Complete/partial
support for 80+
syscalls

I How to maintain unikernel benefits without access to
the application sources?

I Fast system calls and modularity

6/11

Unikernels
Overview

 Host: Linux kernel

Hypervisor: uHyve

G
u

es
t

H
o

st

KVM

Single-address space VM

I Linux ABI
convention:

I ELF loader
convention

I Load-time Stack
layout

I Syscalls

I Kernel adapted
from HermitCore

I Complete/partial
support for 80+
syscalls

I How to maintain unikernel benefits without access to
the application sources?

I Fast system calls and modularity

6/11

Unikernels
Overview

 Host: Linux kernel

Hypervisor: uHyve

Native
Linux
App.

Load

G
u

es
t

H
o

st

KVM

I Linux ABI
convention:

I ELF loader
convention

I Load-time Stack
layout

I Syscalls

I Kernel adapted
from HermitCore

I Complete/partial
support for 80+
syscalls

I How to maintain unikernel benefits without access to
the application sources?

I Fast system calls and modularity

6/11

Unikernels
Overview

 Host: Linux kernel

Hypervisor: uHyve

Native
Linux
App.

Load

G
u

es
t

H
o

st

KVM

Hermitux
kernel

I Linux ABI
convention:

I ELF loader
convention

I Load-time Stack
layout

I Syscalls

I Kernel adapted
from HermitCore

I Complete/partial
support for 80+
syscalls

I How to maintain unikernel benefits without access to
the application sources?

I Fast system calls and modularity

6/11

Unikernels
Overview

 Host: Linux kernel

Hypervisor: uHyve

Native
Linux
App.

Load

Init. stack and jump to entry point

G
u

es
t

H
o

st

KVM

Hermitux
kernel

I Linux ABI
convention:

I ELF loader
convention

I Load-time Stack
layout

I Syscalls

I Kernel adapted
from HermitCore

I Complete/partial
support for 80+
syscalls

I How to maintain unikernel benefits without access to
the application sources?

I Fast system calls and modularity

6/11

Unikernels
Overview

 Host: Linux kernel

Hypervisor: uHyve

Native
Linux
App.

Load

Init. stack and jump to entry point

Syscall

G
u

es
t

H
o

st

KVM

Hermitux
kernel

handler

I Linux ABI
convention:

I ELF loader
convention

I Load-time Stack
layout

I Syscalls

I Kernel adapted
from HermitCore

I Complete/partial
support for 80+
syscalls

I How to maintain unikernel benefits without access to
the application sources?

I Fast system calls and modularity

6/11

Unikernels
Overview

 Host: Linux kernel

Hypervisor: uHyve

Native
Linux
App.

Load

Init. stack and jump to entry point

G
u

es
t

H
o

st

KVM Debug, profile

Syscall
Hermitux

kernel

handler

I Linux ABI
convention:

I ELF loader
convention

I Load-time Stack
layout

I Syscalls

I Kernel adapted
from HermitCore

I Complete/partial
support for 80+
syscalls

I How to maintain unikernel benefits without access to
the application sources?

I Fast system calls and modularity

6/11

Unikernels
Overview

 Host: Linux kernel

Hypervisor: uHyve

Native
Linux
App.

Load

Init. stack and jump to entry point

G
u

es
t

H
o

st

KVM Debug, profile

Syscall
Hermitux

kernel

handler

I Linux ABI
convention:

I ELF loader
convention

I Load-time Stack
layout

I Syscalls

I Kernel adapted
from HermitCore

I Complete/partial
support for 80+
syscalls

I How to maintain unikernel benefits without access to
the application sources?

I Fast system calls and modularity

6/11

Unikernels
Fast Syscalls with Libc Substitution

I HermiTux’s syscall handler is invoked by the syscall
instruction

I Reintroduce high latency for system calls due to the world
switch

I For dynamically compiled programs:
I At runtime load a unikernel-aware Libc

I Making for system calls (fast) function calls directly into the
kernel

I Automatically transformed version of Musl Libc with Coccinelle

7/11

Unikernels
Fast Syscalls with Libc Substitution

I HermiTux’s syscall handler is invoked by the syscall
instruction

I Reintroduce high latency for system calls due to the world
switch

I For dynamically compiled programs:
I At runtime load a unikernel-aware Libc

I Making for system calls (fast) function calls directly into the
kernel

I Automatically transformed version of Musl Libc with Coccinelle

Musl LibCCoccinelle
Semantic patch

(80 LoC)
Patch

(4400 LoC)

“unikernelized”
LibC

7/11

Unikernels
Fast Syscalls with Binary Rewriting

I What about static binaries?
I (Statically) binary-rewrite syscall instructions to direct
jumps to the syscall implementation

I Problem: syscall is 2 bytes long and any call/jmp
instruction will be larger

mov %r10, %rcx
callq 0x200457 (read)
mov $2, %esi
jmp 0x400aac

Original code

Rewritten code Snippet

…
mov $0, %rax (read)

mov $3, %rdi
…

…
jmp 0x200042
nop
nop
mov $3, %rdi
…

(5 bytes)
(1 byte)
(1 byte)

Syscall binary rewriting
jmp 0x200042
nop
nop

(5 bytes)
(1 byte)
(1 byte)

syscall
mov $2, %esi (5 bytes)

(2 bytes)

8/11

Unikernels
Fast Syscalls with Binary Rewriting

I What about static binaries?
I (Statically) binary-rewrite syscall instructions to direct
jumps to the syscall implementation

I Problem: syscall is 2 bytes long and any call/jmp
instruction will be larger

0.000

0.005

0.010

0.015

0.020

0.025

0.030

null (getppid)

read

write

E
xe

ct
io

n
 ti

m
e

 (
s)

Linux
(native)

Hermitux
Handler

Hermitux
Rewrite

Hermitux Lib.
Substitution

Lmbench3

8/11

Unikernels
System-call-based Modularity

I System-call based modularity
I Compile a kernel with support for only the necessary system

calls
I How to identify syscall needed without access to the sources?

I Use binary analysis to find out what is the value in %rax for
each syscall invocation

Program
Number of
system calls

Kernel .text
size reduction

Minimal 5 21.87 %

Hello world 10 19.84 %

PARSEC Blackscholes 15 17.05 %

Postmark 26 14.36 %

Sqlite 31 11.34 %

Full syscalls support 64 00.00 %

9/11

Unikernels
Evaluation

1

10

100

1000

B
in

ar
y

si
ze

 (
M

B
)

0.01

0.1

1

10

100

B
oo

t +

de
st

ru
ct

io
n

tim
e

(s
)

1

10

100

M
em

or
y

U
sa

ge
 (

M
B

)

Legend: Low isolation (software or none) Strong isolation (EPT) Binary compatible with Linux Not Binary compatible with Linux

Binary Size Boot + Destruction time RAM
usage

I Image 650x smaller, boot time 780x faster, RAM usage 9x
lower than a Linux VM!

BT
(Fortran)

EP
(C)

IS
(C)

Stream
cluster
(C++)

Swap
tions

(C++)

NBody
(Python)

0

1

2

Ex
ec

. t
im

e
no

r-
m

al
ize

d
to

 L
in

ux

HermiTux
Docker

OSv
Rump

hermiTux Linux Osv Rump
0

10000

20000

30000

40000

50000 SET
GET

R
eq
ue
st
s/
se
c

Redis

10/11

Conclusion

I Porting to unikernels is hard
I Hinders their adoption in the industry

I HermiTux provides binary-compatibility with Linux
applications

I HermiTux maintains unikernel benefits:
I Fast boot times, small footprints
I Various techniques to get fast system calls and modularity

It’s open source, try it out!
https://ssrg-vt.github.io/hermitux/

11/11

https://ssrg-vt.github.io/hermitux/

