
MARDU: Efficient and Scalable Code
Re-Randomization

SYSTOR '20: Proceedings of the 13th ACM International
Systems and Storage Conference

Christopher Jelesnianski (Virginia Tech), Jinwoo Yom (Virginia Tech), Changwoo Min (Virginia Tech),
Yeongjin Jang (Oregon State University)

1

The Fight against Return Oriented Programming (ROP)

What is Return Oriented Programming?

● An attack that reuses program code to achieve
arbitrary code computation

What are Gadgets?

● Snippets of code that perform specific actions
○ Arithmetic operations
○ Reading/writing to registers
○ Etc.

2

Attack
Code Injection

Defense

Data Execution Prevention
(DEP)

Return Oriented
Programming (ROP)

 Just-In-Time ROP
(JIT-ROP)

Blind ROP (BROP)
(Code Inference)

Continuous
Randomization

Fine-Grained ASLR &
eXecute-only Memory

(XoM)

Address Space Layout
Randomization (ASLR)

Current randomization techniques are good ...
Code Randomization

● Address Space Layout Randomization (ASLR)
+ Light-weight
- Static code layout
- One leak can compromise entire code base

● Re-Randomization Techniques
+ Continuous churn makes gadgets hard to find
- High overhead
- Rely on predictable thresholds such as

- Time interval
- Syscall invocation
- Call history

33

But they are not practical. Why?
● Users desire acceptable performance

(<10% avg & worst-case)

● Users desire strong defenses

● Users desire scalability as more
computation is moved to the cloud

○ Have system-wide security coverage
including shared libraries

● Achieving all three together is hard

4

Performance

Security
GuaranteesScalability

● Introduction
● Challenges
● MARDU Design
● Implementation
● Evaluation
● Conclusion

5

Outline

Challenges for making a practical randomization defense
● Security challenges

○ Code disclosure: a single leaked pointer allows attacker to obtain code layout of a victim
process

● Performance challenges
○ Avoiding useless overwork: Active randomization wastes CPU cycles in case of “what-if”

● Scalability challenges
○ Code Tracking: to support runtime re-randomization tracking and updating of pc-relative code

is a necessary and expensive evil

○ Stop-the-world: Updating shared code on-the-fly is challenging especially in concurrent
access

6

● Introduction
● Challenges
● MARDU Design

○ Security: Leveraging code trampolines
○ Scalability: Enabling code sharing
○ Performance: Re-randomization without stopping the world

● Implementation
● Evaluation
● Conclusion

7

Outline

Example: Code Control Flow
Source Code

8

Traditional Control Flow

foo:
 /* … */
 call bar()

 /* … */
 ret

bar:
 /* … */

 ret

 /* … */
 call foo()

2

1

3

4

void foo(){
 /* … */
 bar();
 /* … */

}

void bar(){
 /* … */
}

MARDU is secure
● Code and Trampoline regions protect

forward edge
○ Trampolines are immutable code targets
○ Protects against code disclosure

● Shadow stack protects backward edge

● Randomization occurs at:
○ Process startup AND
○ Whenever an attack is detected (on-demand)

■ Process crash
■ Execute-only memory violation

9

Stack

...

local

local

ret_addr

+ Shadow Stack

...

ret_addr5

ret_addr6

Stack

...

local

local

Code

Trampoline

XoM Coverage

Trampoline RegionCode Region

Example: Securing MARDU Code

10

void foo(){
 /* … */
 bar();
 /* … */

}

foo_body:
 /* … */
 jmp bar_trampoline()
foo_ret0:

 /* … */
 jmp ShadowStack_top

bar_body:
 /* … */

 jmp ShadowStack_top

Source Code Using Code Trampolines Control Flow

bar_trampoline:
 jmp bar_body

foo_trampoline:
 jmp foo_body

foo_ret0_trampoline:
 jmp foo_ret0

void bar(){
 /* … */
}

2
3

4

1

Shadow Stack

...

foo_ret0_tr

Intel MPK

5

● Introduction
● Challenges
● MARDU Design

○ Security: Leveraging code trampolines
○ Scalability: Enabling code sharing
○ Performance: Re-randomization without stopping the world

● Implementation
● Evaluation
● Conclusion

11

Outline

MARDU is scalable
● MARDU is capable of code sharing (e.g., shared libraries)

○ No previous randomization scheme is capable of
runtime re-randomization AND code sharing

● MARDU leverages position independent code (-fPIC) for
easy fixups of PC-relative code.

● MARDU supports mixed instrumented and non-instrumented
libraries

12

Example: Sharing MARDU code

13

Code
Region (C)

Trampoline
Region (T)

Fixups

.text Section
MARDU Patch
Info Section

MARDU-compiled
Binary/Library

In-Kernel
Randomized
code cache 0xffffffff81171000

TC Random Offset

Place Trampoline Region

Map Kernel Memory

Place Code RegionPerform patching

34

1

2

Example: Sharing MARDU code

14

In-Kernel
Randomized
code cache

TC

0xffffffff81171000

MARDU
Process 1
Userspace

C T

webserver

C T

0x7fa67811a000

MARDU
Process 2
Userspace

C T

dbserver

C T

6 0x7fb67811b000

libc.so libc.so

libc.so

5

● Introduction
● Challenges
● MARDU Design

○ Security: Leveraging code trampolines
○ Scalability: Enabling code sharing
○ Performance: Re-randomization without stopping the world

● Implementation
● Evaluation
● Conclusion

15

Outline

Re-Randomization without stopping the world

16

MARDU
Process 1
Userspace

C T

webserver

C T
MARDU

Process 2
Userspace

C T

dbserver

C T

libc.so libc.so

In-Kernel
Randomized
code cache

T v1C v1

0xffffffff81171000

Re-Randomization without stopping the world

17

MARDU
Process 1
Userspace

C T

webserver

C v1 T v1

libc.so

In-Kernel
Randomized
code cache

T v1C v1

0xffffffff81171000

 T v2C v2

0xffffffff2245d000

C v2 T v2

● Gadgets previously deduced are
now stale

● Randomization is repeated
whenever another attack event is
detected

● Randomization is replicated for ALL
ASSOCIATED shared code of a
victim process

Map new region

1

Map Code v2 to
userspace

Map Trampoline v2
to userspace

32

Unmap old region4

MARDU is performant
● Trampolines

○ No Runtime Instrumentation Tracking

● Trampolines leverage immutable code
○ No stop-the-world mechanisms

● Re-active re-randomization
○ Only when attack detected (on-demand)
○ Responsibility of exiting (crashed) process/thread

18

● Introduction
● Challenges
● MARDU Design
● Implementation
● Evaluation
● Conclusion

19

Outline

MARDU Implementation
● Working Prototype

● Compiler
○ LLVM/Clang 6.0.0
○ 3.5K LOC

● Kernel
○ X86-64 linux 4.17.0
○ 4K LOC

● musl LibC
○ General C library

20

LLVM
Compiler Infrastructure

● Introduction
● Challenges
● MARDU Design
● Implementation
● Evaluation

○ How to evaluate MARDU?
○ Security: MARDU against popular ROP attacks
○ Performance: Compute Bound -> minimal runtime overhead
○ Scalability: Concurrent Web server -> negligible runtime overhead and scalability

● Conclusion

21

Outline

How to evaluate MARDU?
1) How secure is MARDU, against current known and popular attacks on

randomization?

2) How much performance overhead does MARDU impose?

3) How scalable is MARDU in terms of load time, memory savings, and
re-randomization, particularly for concurrent processes (such as a real-world
web server)?

22

● Introduction
● Challenges
● MARDU Design
● Implementation
● Evaluation

○ How to evaluate MARDU?
○ Security: MARDU against popular ROP attacks
○ Performance: Compute Bound -> minimal runtime overhead
○ Scalability: Concurrent Web server -> negligible runtime overhead and scalability

● Conclusion

23

Outline

How MARDU defends against popular ROP

● Blind ROP (BROP) & Code Inference Attacks
○ MARDU: XoM protected code triggers a permission violation and

re-randomization of code
○ MARDU: Re-randomization makes all previous collected layout information stale
○ MARDU: Usage of trampolines & function granularity randomization makes

correlation prediction challenging for attackers

24

● JIT-ROP Attacks
● Low Profile Attacks
● Code Pointer Offsetting Attacks

● Introduction
● Challenges
● MARDU Design
● Implementation
● Evaluation

○ How to evaluate MARDU?
○ Security: MARDU against popular ROP attacks
○ Performance: Compute Bound -> minimal runtime overhead
○ Scalability: Concurrent Web server -> negligible runtime overhead and scalability

● Conclusion

25

Outline

Experimental Setup and Applications
● Experimental Setup

○ All programs compiled with MARDU LLVM compiler and -O2 -fPIC optimization flags
○ Platform:

■ 24-core (48-Hardware thread) machine with two Intel Xeon Silver 4116 CPUs (2.10 GHz)
■ 128 GB DRAM

● Applications
○ SPEC CPU 2006 (All C applications)
○ NGINX web server

26

How MARDU performs

27

Web server (NGINX)

27

NGINX AVG Degradation: 4.4%
5.5%

MARDU randomization with scalability

28

● Re-randomization latency scales approximately linearly with number of fixups required

● Cold start randomization latency for any number of workers for NGINX is 61ms

● Re-randomization latency plateau’s even when under attack

Conclusion
We propose MARDU, an re-randomization approach to thwart return oriented
programming (ROP) attacks

● MARDU randomizes re-actively, on-demand to minimize performance
overhead

○ Active randomization is relic of the past

● MARDU is the first randomization scheme capable of
runtime re-randomization with code sharing

○ Scalable to apply across entire system
○ Randomization of all shared code associated with compromised process/thread

29

Thank You !

