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Abstract
The evergrowing memory demand fueled by datacenter
workloads is the driving force behind new memory tech-
nology innovations (e.g., NVM, CXL). Tiered memory is a
promising solution which harnesses such multiple memory
types with varying capacity, latency, and cost characteristics
in an effort to reduce server hardware costs while fulfilling
memory demand. Prior works on memory tiering make
suboptimal (often pathological) page placement decisions
because they rely on various heuristics and static thresh-
olds without considering overall memory access distribution.
Also, deciding the appropriate page size for an application is
difficult as huge pages are not always beneficial as a result of
skewed accesses within them. We presentMemtis, a tiered
memory system that adopts informed decision-making for
page placement and page size determination. Memtis lever-
ages access distribution of allocated pages to optimally ap-
proximate the hot data set to the fast tier capacity. Moreover,
Memtis dynamically determines the page size that allows
applications to use huge pages while avoiding their draw-
backs by detecting inefficient use of fast tier memory and
splintering them if necessary. Our evaluation shows that
Memtis outperforms state-of-the-art tiering systems by up
to 169.0% and their best by up to 33.6%.

CCS Concepts: • Software and its engineering→Mem-
orymanagement; •Computer systems organization→
Heterogeneous (hybrid) systems.
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1 Introduction

Motivation. Main memory significantly contributes to ap-
plication performance and server costs due to the scaling
limitations of DRAM technologies [40, 46, 61]. For instance,
memory accounts for about 37.1% of Meta’s server costs [49]
and about 50% of Microsoft Azure’s server costs [64]. Driven
by memory-intensive applications, such as graph processing
and Machine Learning (ML), the demand for main memory
is continuing to expand [55, 82]. For example, ML models are
rapidly growing, and are expected to grow 50× in the next
five years [62]. With this rapid pace of growth, the existing
memory hierarchy will not be able to keep up.

Advances in non-DRAMmemory technologies (e.g., NVM:
Non-Volatile Memory [6]) and cache-coherent memory inter-
connects (e.g., CXL: Compute Express Link [17, 51]) provide
new opportunities to alleviate this problem. Tiering mul-
tiple types of memory with different properties, such as
capacity, latency, and cost traits, provides an opportunity
to build a cost-effective system with vast amounts of mem-
ory [10, 19, 24, 70]. However, the higher access latency of
these technologies and the higher address translation cost of
big memory applications [11, 67] can significantly degrade
performance. Therefore, a desirable tiered memory system

should 1) wisely place data at the appropriate memory tier and

2) mitigate address translation cost to minimize performance

degradation of high capacity tiered memory.

Limitations of the state-of-the-art systems. Unfortu-
nately, existing works in tiered memory systems [14, 21, 27,
29, 30, 32, 44, 48, 49, 54, 68, 69, 76, 78, 79, 84] and huge page
management approaches [23, 26, 38, 43, 47, 50, 53, 57, 58, 67,
87] fail to meet the above criteria.
A desirable tiered memory system should place frequently

accessed hot pages in fast tier memory (e.g., local DRAM) while
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putting cold pages in capacity tier memory (e.g., NVM, CXL-

attached memory). The biggest limitation of prior systems
is their inability to effectively classify page hotness across
diverse memory configurations and workloads. They rely
on various heuristics and/or pre-configured thresholds to
identify hot pages. As a result, identified hot pages are often
either smaller or larger than the fast tier capacity, so they
fail to place the hottest pages on fast tier memory. Moreover,
some prior works migrate pages between tiers in the critical
path (e.g., page fault handler), adding non-negligible latency.
We provide a detailed analysis of these problems in §2.2.

Employing huge pages is standard to reduce the address
translation overhead and increase TLB reach. However, in
tiered memory systems, using a huge page can waste pre-
cious fast tier memory. We found that not all subpages in a
huge page are equally hot. For some workloads, some sub-
pages are rarely accessed or not accessed at all. If an entire
huge page gets promoted to the fast tier due to its few very
hot subpages, the fast tier memory space for rarely or not
at all accessed subpages gets wasted. In this case, it would
be more beneficial to split such highly skewed huge pages
and promote only hot subpages to the fast tier. There is no
one-size-fits-all page size in tiered memory systems. In §2.3,
we discuss the access skewness of subpages in a huge page.
Our work. In this paper, we introduce Memtis, the first
tiered memory system to achieve both access distribution-based

page placement and skewness-aware page size determination

within a bounded CPU overhead. Our evaluation shows that
Memtis outperforms all state-of-the-art tiered memory sys-
tems in almost all cases.

To make the best use of fast tier memory,Memtis dynami-
cally determines if a page is hot, warm, or cold by considering
the overall access frequency distribution of pages.Memtis
collects the distribution using a page access histogram with
negligible CPU (< 3%) and memory (< 0.195%) overhead.
It then dynamically decides a threshold for hot, warm, and
cold pages and places pages in the appropriate memory tier.
SinceMemtis determines page hotness by considering the
overall access distribution, it can properly fill the fast tier
with the hottest pages.

Memtis automatically balances the memory access cost
and address translation cost. To decide page size, Memtis
considers the subpage 1 access frequency in a huge page. By
default, Memtis uses a huge page to reduce address trans-
lation costs. However, if only a tiny fraction of subpages in
a huge page are frequently accessed (i.e., a highly skewed
huge page), thereby overshadowing the access benefits of
the fast tier and wasting precious fast tier memory, Memtis
breaks up such a huge page into multiple base pages and
migrates only the hot subpages into the fast tier. Since such
huge page split is an expensive operation involving data
copy and TLB shootdown, Memtis carefully estimates the

1The term subpage means each 4KB-sized region in a huge page.

maximum benefit and splits only the most skewed, hottest
huge pages as per the estimated benefit.
In addition, Memtis can track fine-grained, subpage-

granularity memory accesses using processor event-based
sampling (Intel PEBS). To avoid the excessive CPU overhead
of the sampling approaches, we propose a technique that
dynamically adjusts the memory access sampling intervals.
Finally, all Memtis operations – memory access tracking,
page migration, and huge page split/merge – are performed
asynchronously in the background, so Memtis never slows
down the critical path.
Contributions. We make the following contributions:
• Analyses.We thoroughly analyze the behavior of existing
tiered memory systems with real-world memory-intensive
applications and reveal two new findings: 1) hotness detec-
tion is suboptimal, resulting in a large portion of fast tier
memory containing non-hottest pages; 2) access frequency
of subpages within a huge page is often highly skewed, so
rarely accessed subpages waste precious fast tier memory.

• Memtis design. We propose Memtis, the first tiered
memory system that solves the above problems within
a bounded CPU (< 3%) and memory (< 0.195%) overhead.
Memtis harnesses page access distribution for the best tier-
ing decision and dynamically chooses page size according
to subpage access skewness of huge pages.

• Evaluation.We evaluateMemtis with eight representa-
tive memory-intensive applications and compare Memtis
against six state-of-the-art systems [32, 49, 68, 76, 78, 84]
while varying the ratios of fast tier (DRAM) and capacity
tier (NVM or CXL memory). Memtis outperforms other
systems by 33.6% on average (geomean). In addition, by
dynamically splitting huge pages based on their skewness,
Memtis achieves up to a 19.9% performance improvement
and reduces memory bloat by up to 45.4%.

The Memtis prototype is available at https://github.com/
cosmoss-jigu/memtis.

2 Analysis of Tiered Memory Systems

This section discusses existing tiered memory systems. In
particular, we analyze the three essential aspects of tiered
memory system design: 1) tracking memory access (§2.1), 2)
placing memory pages into either fast tier (e.g., DRAM) or
capacity tier (e.g., NVM, CXL-attached memory) (§2.2), and
3) deciding the best page size (§2.3). We present a comparison
summary of prior work in Table 1.

2.1 Tracking Memory Accesses

Tracking memory access is an essential step in character-
izing the memory access of applications. The information
from the memory access characterization aids in deciding
page placement such that frequently accessed pages (i.e., hot
pages) are kept in the fast tier while rarely accessed pages
(i.e., cold pages) live in the capacity tier.

https://github.com/cosmoss-jigu/memtis
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Access tracking Memory placement Considering
page sizeMechanism Subpage

tracking Promotion metric Demotion metric Criteria for thresholding Critical path
migration

AutoNUMA [76] Page fault No Recency - Static access count Promotion None

AutoTiering [32] Page fault No Recency Frequency Static access count (promotion)
LFU (demotion) Promotion None

Tiering-0.8 [78] Page fault No Recency Recency Promotion rate Promotion None
TPP [49] Page fault No Recency + Frequency Recency Static access count Promotion None
HotBox [14] Page fault No Recency + Frequency Recency Static access count Promotion Base page only
Nimble [84] PT scanning No Recency Recency Static access count None None
MULTI-CLOCK [48] PT scanning No Recency + Frequency Recency Static access count None None

TMTS [22] PT scanning &
HW-based sampling No Recency + Frequency Recency Static access count (promotion)

Period never accessed (demotion) None Split upon demotion
HeMem [68] HW-based sampling No Recency + Frequency Recency + Frequency Static access count None None
Memtis HW-based sampling Yes Exponential moving average of access frequency Memory access distribution None Split based on access skew

Table 1. Comparison of tiered memory systems in terms of memory access tracking, memory placement, and determining page sizes.
Memory access tracking using page faults [14, 32, 49, 76, 78] increases access latency while page table scanning [48, 84] is not scalable as
memory size grows. Also, page table-based approaches cannot perform fine-grained (i.e., subpage granularity) tracking when a huge page
is used. For memory placement, all prior works rely on either recency or frequency of page access [14, 32, 48, 49, 76, 78, 84] and/or use a
statically pre-determined hotness threshold [14, 32, 48, 49, 68, 76, 84]. The low-cost, but inaccurate, hotness metric together with the static
threshold makes the placement decision suboptimal. No prior work has considered access skewness in huge pages in tiering decision-making.

Page table-based access tracking. Several systems [14,
32, 49, 76, 78] use page faults to track memory access. Oth-
ers [22, 27, 30, 48, 60, 84] check whether a page is accessed
by scanning the associated reference bit; for mmap-ed pages,
the processor turns on the reference bit of a page, and for
file-backed pages, the OS updates this bit.

The page table-based approaches have several critical lim-
itations. They incur high runtime overhead by triggering
additional page faults or costly TLB shootdowns. Moreover,
the overhead increases as the memory size and the number
of processes increase because more pages and page tables
need scanning. Lastly, the tracking accuracy is limited; they
can only identify whether a page gets accessed between
successive scanning intervals; in addition, a page being the
smallest unit of tracking, fine-grained access tracking for
each 4KB page is not possible when using huge pages.

Recently introduced DAMON [59] somehow mitigates the
monitoring overhead of page table-based access tracking.
However, it monitors memory at a coarser granularity (i.e.,
region) than a page, assuming page access frequency within
a region will be the same, with a short scanning interval
(5 msec by default). Figure 1 clearly shows the trade-off
between scanning granularity, scan interval, and accuracy in
DAMON. Coarse granularity results in grouping pages with
distinct access frequencies (Figure 1a) whereas fine-grained
access tracking with a longer interval fails to differentiate
access frequencies among regions (Figure 1b). Unfortunately,
achieving high accuracy comes at significant CPU overhead
(72.85% in Figure 1c).
Hardware-based memory access sampling. Leveraging
the processor’s hardware event-based sampling to track
memory access on tiered memory systems is another ap-
proach used by recent works [15, 22, 54, 68]. Modern proces-
sors provide hardware event sampling features – Processor
Event-Based Sampling (PEBS) in Intel and Instruction-Based
Sampling (IBS) in AMD processors. For example, depending
on the types of hardware events (e.g., LLC miss) and their
sampling interval (e.g., once every 1000 events), PEBS stores
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Figure 1.Memory access heat map of 654.roms by DAMON [59].
𝑠-𝑚-𝑋 in caption denotes DAMON configuration: 𝑠 msec scanning
interval with minimum𝑚 and maximum 𝑋 regions. The CPU over-
head for (a), (b), and (c) are 2.15%, 3.18%, and 72.85%, respectively.

sampled events with process ID and virtual address accessed
in a PEBS buffer. Event-based access sampling is capable of
reporting exact memory addresses without scanning page
table entries. Notably, it can track subpage accesses in a huge
page to figure out the utilization of huge pages, a property
none of the prior works [15, 22, 54, 68] exploited. However,
the overhead increases linearly with shorter sampling inter-
vals since more samples are collected and processed.
Insight #1. Tracking memory access using page faults in-
curs high latency on the critical path. Also, page table-based
approaches are coarse-grained and provide inaccurate access
tracking in both space (i.e., huge page) and time (i.e., scan-
ning interval) dimensions. On the other hand, event-based
memory access sampling, like Intel PEBS, reports the exact
address accessed but its overhead increases proportionally
with the sampling frequency. Hence, efficient and accurate
memory access tracking is essential for a tiered memory sys-
tem that allows fine-grained access monitoring (e.g., subpage
accesses) and scales well for large memory sizes.

2.2 Deciding Where to Place Pages

A tiered memory system identifies frequently accessed hot

pages and rarely accessed cold pages, and correspondingly
migrates memory pages to the appropriate tiers.
Hotnessmetrics. The recency and frequency of page access
are widely used metrics to predict future accesses.



Figure 2. Identified hot and cold pages over time in HeMem [68].
The black dashed line denotes the size of fast tier (DRAM).

The recency of page access is measured in various ways,
including the most recently accessed page (AutoNUMA [76]),
a group of recently accessed pages (active list in Nimble [84]),
and the approximate re-fault interval (Tiering-0.8 [78]). Al-
though recency can be collected efficiently, it cannot capture
a page’s access history, so a placement decision solely based
on recency can be suboptimal.

The access frequency of a page compensates for the limited
information of recency. TPP [49] and MULTI-CLOCK [48]
promote pages accessed twice or more to the fast tier by
extending LRU policies. AutoTiering [32] maintains the ac-
cess history of a page using an N-bit history vector, where
each bit represents if a page is accessed in a scan interval.
While access frequency retains more information than re-
cency, most systems currently capture frequency in a very
limited form (e.g., one bit in a scan interval [32]).
Hotness threshold. In most prior approaches, a hotness
threshold (used to determine if a page is hot) is deeply en-
tangled in their design. For example, the hotness threshold
in AutoNUMA [76], AutoTiering [32], and Nimble [84] is
one (i.e., only the most recently accessed page is hot); the
threshold in TPP [49] and MULTI-CLOCK [48] is two. Such
static thresholds do not reflect workload characteristics, so
placement decisions based on them are likely to be subopti-
mal. Although a few systems dynamically determine their
thresholds, they do so in limited ways – e.g., selecting victim
pages for demotion in AutoTiering [32] or selecting can-
didate pages for promotion to throttle migration traffic in
Tiering-0.8 [78]. TMTS [22] also employs a static criteria for
promotion, while it uses an adaptable policy for demotion.
Criticality of hotness detection. The quality of hot and
cold page detection critically affects the effectiveness of mem-
ory management systems.
One example is the multi-generational LRU (MGLRU)

framework [85]. Linux kernel community recently replaced
the conventional 2Q LRU with MGLRU. MGLRU makes
a better page eviction decision using fine-grained, multi-
generational page classification, boosting performance [63].
Another example is HeMem [68]. Although HeMem pre-

cisely tracks page access frequency using PEBS, it makes
sub-optimal (often pathological) hotness decisions due to
its pre-defined, static thresholds. Pages with access count
beyond the static hot threshold are promoted to the fast tier.

Whenever the access count of any page reaches the static
cooling threshold, the access count of all pages is halved.

Figure 2 shows the number of hot pages classified in two
memory-intensive applications: PageRank and XSBench. We
describe our evaluation setup in §6. As Figure 2 clearly shows,
hot page detection in HeMem is not optimal. When the size
of identified hot pages is smaller than the fast tier’s capacity
(entire duration in PageRank and after 200s in XSBench),
HeMem can place the hot pages in the fast tier, with the
remaining space in the fast tier occupied by arbitrary cold

pages. On the other hand, when the hot set size is greater
than the fast tier’s capacity (50s–180s in XSBench), an arbi-

trary subset of hot pages will be placed in the fast tier. One
can try different threshold values to get the best result for
applications, however, it is unlikely that a single threshold
will work well across different workloads.
When to migrate. After classifying hot and cold pages,
tiered memory systems migrate pages to their designated
memory tiers. Prior works [14, 32, 49, 76, 78] identify hot
pages upon page faults and migrate them to fast tier memory
on the critical path. Doing so leads to extended blocking of
the application during page fault, imposing overhead.
Insight #2. For optimal page placement, a tiered memory
system should use accurate hotness metrics and adjust hot-
ness criteria according to workload characteristics and mem-
ory configurations (e.g., fast tier capacity). Also, it should
migrate pages off the critical path (not in the page fault
handler) to minimize additional latency.

2.3 Mitigating Address Translation Cost

Address translation overhead is a well-known bottleneck in
memory-intensive applications [25]. As the memory foot-
print grows, there is a higher chance of TLB misses, increas-
ing address translation costs. Using huge pages is a standard
practice to mitigate this by increasing the TLB reach and
lowering the TLB miss penalty (i.e., three levels in the page
table instead of four).

However, huge pages make page migration between mem-
ory tiers more expensive [83, 84]. Moreover, memory access
tracking techniques consider the entire huge page hot even
when only a small fraction of subpages in a huge page are
frequently accessed [4]. As a result, a small fraction of hot
subpages in a huge page triggers the promotion of the entire
huge page, wasting precious fast tier memory [14, 22, 86].
Analysis of huge page utilization. To investigate the ac-
cess skew in subpage accesses across huge pages, we ran two
memory-intensive benchmarks, Liblinear [45] and Silo [75].
We enabled Transparent Huge Page (THP) for huge page
allocation and sampled memory accesses using PEBS. From
the collected memory traces, we calculated huge page utiliza-
tion, defined as the number of accessed subpages in a huge
page. Since a 2MB huge page consists of 512 4KB subpages,
utilization ranges from 0 to 512.



(a) Liblinear (b) Silo

Figure 3.Hotness distribution to huge page utilization for Liblinear
and Silo benchmarks. Each dot represents a huge page.

Figure 3 presents the access count distribution against the
huge page utilization. When a huge page with high access
count exhibits a high utilization (e.g., Liblinear in Figure 3a),
placing such a hot huge page in the fast tier can fully exploit
fast memory access and address translation benefits. On
the other hand, if there is no positive correlation between
the access count and utilization of a huge page (e.g., Silo in
Figure 3b), only a few subpages in such a hot huge page are
accessed. So migrating hot huge pages with low utilization
would waste memory in the fast tier.
Insight #3. Our analysis demonstrates that one page size
does not fit all. A tiered memory system should dynamically
decide the appropriate page size according to page hotness
and huge page utilization. To realize this, fine-grained access
tracking is essential.

3 Memtis Design Overview
This section overviews Memtis as illustrated in Figure 4: (1)
how to track memory accesses in a fine-grained and light-
weight manner using hardware-based memory access sam-
pling, (2) how to dynamically and precisely determine hot
and cold pages considering the overall memory access fre-
quency distribution, and (3) how to dynamically determine
page size (huge page vs. base page) to reduce translation cost
without wasting fast tier memory.
(1) Fine-grained, lightweight access tracking. Memtis
samples memory accesses using PEBS. Since PEBS sam-
ples contain exact memory addresses ( 1 ),Memtis can sup-
port fine-grained access tracking regardless of OS page size.
ksampled – a Memtis-managed kernel background thread
– processes the sampled addresses and updates memory ac-
cess statistics in two different histograms, page access his-
togram and emulated base page histogram ( 2 , 3 ). Memtis
dynamically adjusts the memory access sampling frequency
to ensure its CPU overhead is under a threshold (< 3%).
(2) Histogram-based hot set classification. Memtis
maintains a hotness distribution of all allocated pages us-
ing a page access histogram of page access counts ( 3 ). This
histogram represents the number of distinct pages (y-axis)
with access counts falling within a particular access count
range (x-axis).Memtis utilizes the access histogram to know

Application

PMU (PEBS)
LLC misses & store instructions

❶ Sampling

{address,PID} ......

PEBS event queue

Huge page ++

Subpages ++

❷ Update huge & base page access count

❸ Update two different access count histograms

# 
pa

ge
s

Page access count

HotCold

W
ar

m

✓

# 
pa

ge
s

Page access count

Page access histogram

✓

# 
pa

ge
s

Page access count

Emulated base page histogram

✓

❹ Threshold adaptation 

❺ Periodic histogram cooling

❻ Page migration in background

⑦ Split benefit estimation

⑧ Split candidates selection

⑨ Split & merge in background

Fine-grained, lightweight
access tracking (§4.1)

Histogram-based hot set
classification (§4.2)

Skewness-aware page size
determination (§4.3)

# 
pa

ge
s

Page access count

Benefit

Application

Figure 4. Overall architecture ofMemtis.
the hotness distribution, so it can make the best tiering deci-
sions, placing the hottest pages in the fast tier to minimize
access latency. As far as we know, Memtis is the first system

leveraging page access frequency distribution to make optimal

placement decisions in tiered memory systems.

Memtis determines if a page is either hot, cold, orwarm es-
sentially based on its access count by adapting the threshold
( 4 ). Memtis maintains the hot set size (highlighted red in
Figure 4) close to the fast tier capacity so that the fast tier can
accommodate all hot pages.Cold pages live in the capacity tier,
and Memtis avoids migrating warm pages when the migra-
tion overhead would overshadow the benefit of lower access
latency in the fast tier. Memtis maintains the freshness of
the histograms and page statistics via cooling ( 5 ), a process
that halves the access count of all pages. This decreases old
access counts exponentially to maintain the trend of page ac-
cess frequency.Memtis performs page promotion/demotion
in the background using a dedicated per-memory node mi-
gration thread (kmigrated) to avoid extending the critical
path and performance slowdown ( 6 ). It is worth noting that

the entire process of Memtis – including page access tracking,

hotness classification, promotion, and demotion – is done in

the background, never extends critical path.

(3) Skewness-aware page size determination. Memtis
uses Transparent Huge Pages (THP) in Linux by default



to reduce address translation costs. However, as discussed
in §2.3, a single page size does notworkwell for all workloads.
For instance, when only a small fraction of subpages in a huge
page are frequently accessed (i.e., low huge page utilization
as Figure 3b), it is better to break up such a huge page and
migrate only the hot subpages to the fast tier.

Memtis detects such scenarios via split benefit estimation.
Memtis estimates the maximum hit ratio when only base
pages are employed using an emulated base page histogram

and compares the estimated maximum hit ratio against the
actual hit ratio obtained from the sampled PEBS records.
This gap ( 7 , the green part in Figure 4) approximates the
potential benefit of a huge page split. If the potential benefit
is large,Memtis chooses huge pages with high access skew in
their subpages as split candidates ( 8 ). Then, it splinters the
huge pages in the background and places each split subpage
into the appropriate memory tier by referring to subpage
access information maintained in the huge page ( 9 ). Since
splitting a huge page is an expensive operation involving
subpage migration and TLB shootdown, Memtis makes the
split decision after observing long-term page access trends.
As far as we know,Memtis is the first system that dynamically

chooses the page size according to subpage access skewness.

4 Detailed Design ofMemtis

We now elaborate on theMemtis design: fine-grained, light-
weight access tracking (§4.1), histogram-based hot set classi-
fication with off-the-critical-path page migration (§4.2), and
skewness-aware page size determination (§4.3).

4.1 Fine-grained, Lightweight Access Tracking

4.1.1 Sampling Memory Accesses Using PEBS.
Memtis samples retired LLC load misses and retired store
instructions using PEBS for fine-grained access tracking. It
dynamically adjusts the sampling intervals to maximize the
number of sampled events with bounded overheads.Memtis
initially sets the sampling intervals to 200 and 100,000
for LLC load misses and store instructions, respectively.
ksampled periodically calculates the exponential moving
average of its CPU usage and adjusts the sampling intervals
(using __perf_event_period) to meet the upper limit of its
CPU usage (by default, 3% of a single core). ksampled uses
hysteresis to prevent continual updates on the sampling
period: it increments or decrements the period if the
CPU usage and its upper limit are separated by 0.5%.
We observed that, across all our evaluated benchmarks,
ksampled only consumes 2.016% of a single CPU with 0.922%
of performance overheads on average.

4.1.2 Page Access Metadata. Memtis maintains hotness,
utilization, and skewness for memory pages. We calculate the
hotness for all page types (i.e., base page, huge page, subpage
in a huge page). In contrast, utilization and skewness are
maintained only for huge pages (§4.3.2).

Hotness represents the access trend using the exponential
moving average (EMA) of page access count. The hotness
factor (𝐻𝑖 ) for page 𝑖 is defined by the page’s access count
(𝐶𝑖 ) and page type as follows:

𝐻𝑖 =

{
𝐶𝑖 𝑖 𝑓 page 𝑖 is a huge page
𝐶𝑖 × 𝑛𝑟_𝑠𝑢𝑏𝑝𝑎𝑔𝑒𝑠 𝑖 𝑓 page 𝑖 is a base page

(1)

where 𝑛𝑟_𝑠𝑢𝑏𝑝𝑎𝑔𝑒𝑠 is the number of subpages constituting a
huge page (i.e., 512 in x86). Since a huge page is 𝑛𝑟_𝑠𝑢𝑏𝑝𝑎𝑔𝑒𝑠
times more likely to be accessed than a base page, we com-
pensate for a base page’s hotness using 𝐶𝑖 × 𝑛𝑟_𝑠𝑢𝑏𝑝𝑎𝑔𝑒𝑠 .
ksampled increments𝐶𝑖 of page 𝑖 by one for each PEBS sam-
ple. Note that 𝐶𝑖 (and 𝐻𝑖 ) will be periodically halved during
the cooling process (§4.2.2) for calculating EMA.

4.1.3 Page Access Histogram. A page access histogram

consists of 16 bins by default. Each bin represents a specific
range of hotness factor (𝐻𝑖 ) following an exponential scale;
𝑛-th bin has the range of hotness factor [2𝑛 , 2𝑛+1), and the
last bin has no upper bound on it. The value (y-axis) of each
bin denotes the number of distinct pages (counting at 4KB
granularity) in the hotness range.
Our exponential scale bins are compact (i.e., 16 bins × 8-

byte counter = 128 bytes). Also, the exponential scale simpli-
fies our histogram management in the cooling process since
cooling halves the access counts (refer to details in §4.2.2).
Most importantly, it matches well with the non-linear (of-
ten exponential, e.g., Zipf [3] or Pareto [7]) nature of page
accesses – hot pages have several orders of magnitude more
accesses than warm or cold pages. Such non-linear page
access frequency is difficult to be captured with an equally-
divided bin design.
Updating the page access histogram is very efficient.

Whenever ksampled updates a page’s hotness factor (𝐻𝑖 ),
it checks if the new hotness factor falls into a different bin.
Suppose that originally𝐻𝑖 falls into bin 6; after incrementing
𝐶𝑖 , if the new 𝐻𝑖 falls into bin 7, ksampled decrements the
page count in bin 6 and increments the page count in bin 7.

Note thatMemtis manages two histograms – page access
histogram and emulated base page histogram (or base page
histogram in short) illustrated in Figure 4.Memtis uses the
page access histogram to determine hot pages (§4.2) and the
base page histogram to determine page sizes (§4.3).

4.2 Histogram-based Hot Set Classification

Memtis periodically adapts the threshold of hot, warm, and
cold pages in the page access histogram by considering the
hotness distribution (§4.2.1). Also, it cools down the his-
togram to calculate EMA and capture trends of page access
frequency (§4.2.2). Lastly, it quickly moves pages to the ap-
propriate memory tier (§4.2.3) in the background.

4.2.1 Dynamic Threshold Adaptation. Memtis main-
tains hot, warm, and cold thresholds denoted by 𝑇ℎ𝑜𝑡 , 𝑇𝑤𝑎𝑟𝑚 ,
and 𝑇𝑐𝑜𝑙𝑑 , respectively. These thresholds are the bin indices



of the page access histogram. If page 𝑖’s bin index (𝐵𝑖 ) is
greater than or equal to 𝑇ℎ𝑜𝑡 (i.e., hot page, 𝑇ℎ𝑜𝑡 ≤ 𝐵𝑖 ), it
will be placed in the fast tier. Similarly, if 𝐵𝑖 ≤ 𝑇𝑐𝑜𝑙𝑑 (i.e.,
cold page), it will be moved to the capacity tier. Otherwise
(i.e., warm page, 𝑇𝑐𝑜𝑙𝑑 < 𝐵𝑖 ≤ 𝑇𝑤𝑎𝑟𝑚), it is hard to decisively
determine the page’s hotness, soMemtis does not migrate
such a page and leaves it where it is.
Determining thresholds. ksampled periodically adjusts
the thresholds based on the page access distribution encoded
in the histogram. As shown in Algorithm 1, ksampled ex-
pands 𝑇ℎ𝑜𝑡 as much as possible to hold the hottest pages in
higher bins before overflowing the fast tier (Lines 2-6).
The identified hot set size (𝑠) could be smaller than the

fast tier capacity (𝑀𝑆 𝑓 𝑎𝑠𝑡 ) sinceMemtis organizes histogram
bins on an exponential scale. If the identified hot set size
is close enough to the fast tier capacity (𝑠 > 𝑀𝑆 𝑓 𝑎𝑠𝑡 × 𝛼),
Memtis can fully utilize fast tier and the small fraction of un-
used memory can be reserved for future page allocations and
promotions (Lines 7-8). We set 𝛼 to 0.9 empirically. Note that
Memtis allocates pages on the fast tier whenever available.
When the size of the identified hot pages is not close

enough to the fast tier capacity (≤ 90% when 𝛼 = 0.9),
Memtis might retain arbitrary cold pages in fast tier mem-
ory, similar to prior work (see PageRank in Figure 2). In such
a case, some soon-to-be hot pages could be demoted, but
would subsequently get promoted back shortly to the fast
tier after becoming hot. This generates unnecessary migra-
tion traffic and overshadows the benefit of our dynamic page
placement. To remedy this problem, we introduce a warm
threshold,𝑇𝑤𝑎𝑟𝑚 . When 𝑠 ≤ 𝑀𝑆 𝑓 𝑎𝑠𝑡×𝛼 ,𝑇𝑤𝑎𝑟𝑚 is set to𝑇ℎ𝑜𝑡−1
(Line 10). Memtis employs 𝑇𝑤𝑎𝑟𝑚 to exclude pages whose
hotnesses are close to the hot threshold (i.e., warm pages)
in the fast tier from demotion candidates. Nevertheless, in
a case where there are no cold pages in the fast tier and
Memtis needs to secure free space for newly allocated pages
or hot pages to be promoted, Memtis proceeds to demote
warm pages.𝑇𝑐𝑜𝑙𝑑 is set to𝑇𝑤𝑎𝑟𝑚 −1 once𝑇𝑤𝑎𝑟𝑚 is calculated
(Line 12). Initially, 𝑇ℎ𝑜𝑡 , 𝑇𝑤𝑎𝑟𝑚 , and 𝑇𝑐𝑜𝑙𝑑 are set to 1, 1, and
0, respectively. Initial hotness for newly allocated pages is
set to the current hotness threshold (𝑇ℎ𝑜𝑡 ) to prevent them
from being immediately chosen as demotion candidates.
Threshold adaptation interval. Given the purpose of the
threshold adaptation, it is adequate to initiate the adapta-
tion process when the total capacity of sampled pages is
similar to the fast tier capacity. Moreover, while it is accept-
able for the interval to be short, selecting an excessively
lengthy interval could negatively affect performance. Based
on this rationale, Memtis performs the adaptation for every
100,000 sampled events. We show a sensitivity study on the
adaptation interval in §6.3.4.

4.2.2 Periodic Histogram Cooling. The memory access
trend of a page could change over time. Hence, Memtis
should decay the impact of old accesses and givemore weight

Algorithm 1: Dynamic adaptation of thresholds.
𝑀𝑆𝑓 𝑎𝑠𝑡 : size of fast tier memory
𝐻𝑆𝑏 : total size of pages belonging to histogram bin 𝑏
𝑚𝑎𝑥 : maximum bin index of the historgram (i.e., 15)

// Calculate hot threshold, 𝑇ℎ𝑜𝑡

1 𝑠 = 0, 𝑏 =𝑚𝑎𝑥

2 while 𝑏 ≥ 0 or (𝑠 +𝐻𝑆𝑏 ≤ 𝑀𝑆𝑓 𝑎𝑠𝑡 ) do
3 𝑠 = 𝑠 +𝐻𝑆𝑏

4 𝑏 = 𝑏 − 1
5 end
6 𝑇ℎ𝑜𝑡 = 𝑏 + 1
// Calculate warm threshold, 𝑇𝑤𝑎𝑟𝑚

7 if 𝑠 > 𝑀𝑆𝑓 𝑎𝑠𝑡 × 𝛼 then
8 𝑇𝑤𝑎𝑟𝑚 = 𝑇ℎ𝑜𝑡

9 else
10 𝑇𝑤𝑎𝑟𝑚 = 𝑇ℎ𝑜𝑡 − 1
11 endif
// Calculate cold threshold, 𝑇𝑐𝑜𝑙𝑑

12 𝑇𝑐𝑜𝑙𝑑 = 𝑇𝑤𝑎𝑟𝑚 − 1

to recent accesses. To this end,Memtis periodically halves
every page’s access count (𝐶𝑖 ). This cooling process is in-
deed calculating the exponential moving average (EMA) of
𝐻𝑖 with a decay factor of 0.5. Since we configure the his-
togram bins exponentially, cooling requires merely shifting
the value of each bin in the histogram one bin to its left. The
hot and warm thresholds are updated based on the shifted
histogram. Then, kmigrated scans the page lists and halves
each page’s access count. For huge pages, kmigrated also
performs cooling for every subpage’s metadata. If a page
has the highest bin index (i.e., 𝐵𝑖 = 𝑚𝑎𝑥), 𝐵𝑖 could be un-
changed after cooling, so Memtis checks the bin index of
cooled pages and corrects the histogram if necessary.

Memtis performs cooling based on the number of sampled
memory accesses. The cooling period has to be sufficiently
large as it determines the total number of sampled memory
accesses reflected in the histogram.Memtis performs cool-
ing for every two million records, which is large enough
considering the gigabyte-scale fast tier memory size.

4.2.3 Page Migration in the Background. Memtis cre-
ates a kmigrated kernel thread for each memory tier and
performs all promotion and demotion operations in the back-
ground. Memtis maintains a promotion list for the capacity
tier and a demotion list for the fast tier. The promotion list
contains only the hot pages while the demotion list has both
warm and cold pages. Whenever ksampled processes a mem-
ory access sample, it compares the page’s hotness factor (𝐻𝑖 )
to 𝑇ℎ𝑜𝑡 and moves the page to the promotion list if it is hot.
When kmigrated performs cooling by halving a page’s ac-
cess count, some pages could become warm or cold, in which
case kmigrated moves them to the demotion list.
kmigrated is woken up periodically (500ms). The capacity

tier kmigrated checks if there are hot pages in the capacity
tier and free space is available in the fast tier. If so, it promotes
hot pages in the capacity tier to the fast tier.



When available memory in the fast tier falls below a free-
space threshold, the fast tier kmigrated starts demotion. We
set the free-space threshold to 2% of the fast tier size for
future page allocations and promotions. kmigrated chooses
victim pages in the demotion list of the fast tier. It first de-
motes cold pages in the demotion list (𝐻𝑖 ≤ 𝑇𝑐𝑜𝑙𝑑 ) to the
capacity tier. If enough free space is secured after demoting
cold pages, kmigrated stops. Otherwise, it demotes warm
pages to the capacity tier until enough free space is acquired.
Hence,Memtis is able to keep as many warm pages as possi-
ble in the fast tier. Note that Memtis treats all pages within
a given hotness group as equivalent, so there is no strict
demotion order among pages in the same group (i.e., warm
or cold).

4.3 Skewness-aware Page Size Determination

Huge pages are not always beneficial, due to their memory
bloat and access skew in the fast tier. Also, splitting a huge
page is very expensive, involving page table updates and
TLB shootdown, so aggressively splitting huge pages can
do more harm than good. Hence, Memtis first estimates the
maximum benefit of huge page split based on the long-term
page access history (§4.3.1). Then it determines how many
and what huge pages need to be split (§4.3.2), and finally
performs page type conversion in the background (§4.3.3).

4.3.1 Estimating the Benefit of Huge Page Split. If
only base pages were used and the hottest base pages were
placed in the fast tier, we avoid wasting fast tier memory due
to the low utilization of huge pages. 𝑒𝐻𝑅 is the estimated hit
ratio when we exclusively use base pages.Memtis compares
the actual measured hit ratio (𝑟𝐻𝑅) and the estimated hit
ratio (𝑒𝐻𝑅) of the fast tier memory. Since 𝑟𝐻𝑅 characterizes
the current utilization of the fast tier, if 𝑟𝐻𝑅 is much lower
than 𝑒𝐻𝑅, there is room to increase the hit ratio by splitting
skewed huge pages and filling the fast tier memory with hot
base pages.
Calculating 𝑟𝐻𝑅 and 𝑒𝐻𝑅. When ksampled processes a
sampled memory access, it checks if the address falls into
the fast tier. If so, ksampled increments 𝑟𝐻𝑅.Memtis main-
tains an emulated base page histogram to estimate 𝑒𝐻𝑅. The
base page histogram manages a memory access distribu-
tion at a 4KB page granularity (including subpages in huge
pages), regardless of actual OS-managed page size. The base
page histogram is updated and cooled in the same way as
the regular page access histogram. Using the base page his-
togram,Memtis calculates its thresholds – say 𝑇 𝐵𝑃

ℎ𝑜𝑡
– using

Algorithm 1. Whenever ksampled updates page metadata, it
checks if a corresponding 4KB (sub- or base-) page is hotter
than 𝑇 𝐵𝑃

ℎ𝑜𝑡
. If so, Memtis increments the hit count of 𝑒𝐻𝑅.

Triggering huge page split. Memtis performs benefit esti-
mation when a large number of memory accesses is sampled
to make a decision based on the long-term, stable memory
access trends. It calculates 𝑒𝐻𝑅 whenever the number of

sampled records exceeds a quarter of the total number of
allocated pages (e.g., at least every 1 million records for 4GB
(220× 4KB) memory size). Moreover, Memtis triggers the
huge page split procedure only when the potential benefit
(𝑒𝐻𝑅 − 𝑟𝐻𝑅) is sufficiently large (5% or higher).

4.3.2 Split Candidates Selection. When the expected
benefit is sufficiently large,Memtis decides the number of
huge pages to be split as follows:

𝑁𝑠 =𝑚𝑖𝑛((𝑒𝐻𝑅 − 𝑟𝐻𝑅) × Δ𝐿

𝐿𝑓 𝑎𝑠𝑡
× 𝑛𝑟_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 × 𝛽

𝑎𝑣𝑔_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_ℎ𝑝
,

𝑛𝑟_𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑎𝑣𝑔_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_ℎ𝑝
)

(2)

Memtis aggressively splits more huge pages when the expected

benefit is higher, the latency gap between the two memory tiers

is larger, and when more huge pages are accessed. Specifically,
when the expected access benefit (𝑒𝐻𝑅 − 𝑟𝐻𝑅) is higher,
Memtis splits more huge pages. Also, when the latency gap
(Δ𝐿) between the capacity tier (𝐿𝑐𝑎𝑝 ) and the fast tier (𝐿𝑓 𝑎𝑠𝑡 )
is larger, huge pages are split more aggressively (Δ𝐿/𝐿𝑓 𝑎𝑠𝑡 ).
The number of huge pages split (𝑁𝑠 ) should be proportional
to the number of distinct huge pages accessed in a benefit esti-
mation interval. To approximate the number of distinct huge
pages accessed in a benefit estimation interval,Memtis uses
the total number of samples (𝑛𝑟_𝑠𝑎𝑚𝑝𝑙𝑒𝑠) and the average
of sampled accesses within a huge page (𝑎𝑣𝑔_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_ℎ𝑝)
with a scale factor (𝛽 = 0.4). Our approximation is trivial to
calculate without incurring overheads of precisely managing
the set of accessed huge pages. Also, 𝑁𝑠 cannot exceed the
number of distinct huge pages (𝑚𝑖𝑛(...)).
Calculating the skewness of a huge page. Upon deter-
mining the number of huge pages to split,Memtis decides
which huge pages to split based on the subpage access skew.
We define the skewness factor of a huge page 𝑖 as follows:

𝑆𝑖 =

∑𝑛𝑟_𝑠𝑢𝑏𝑝𝑎𝑔𝑒𝑠
𝑗=0 𝐻 2

𝑖 𝑗

𝑈 2
𝑖

(3)

where𝑈𝑖 is the utilization factor and𝐻𝑖 𝑗 is the hotness factor
of the 𝑗-th subpage of huge page 𝑖 . The utilization factor
𝑈𝑖 indicates the number of hot subpages in a huge page
(𝑇 𝐵𝑃
ℎ𝑜𝑡

≤ 𝐻𝑖 𝑗 ). The skewness factor 𝑆𝑖 gets higher when the huge

page’s utilization (𝑈 2
𝑖 ) decreases and its subpage hotness factors

(

∑
𝐻 2
𝑖 𝑗 ) rise. We squared 𝑈𝑖 and 𝐻𝑖 𝑗 because such non-linear,

monotonic-increasing transformation helps to distinguish a
skewed access pattern from a uniformly hot access pattern.
Choosing top-𝑁𝑠 highly skewed huge pages. kmigrated
updates the skewness factor of each huge page at every cool-
ing interval since cooling scans entire pages, and its period
is long enough to capture long-term access behavior. To ef-
ficiently choose the top-𝑁𝑠 highly skewed pages, Memtis
builds an array of skewness factors during cooling, where
each entry contains a list of huge pages in a skewness range.
Then, it chooses the top-𝑁𝑠 huge pages from the array.



4.3.3 Page Type Conversion in the Background. The
chosen split candidates are then moved to a split queue and
kmigrated splinters the huge pages in the split queue. Specif-
ically, it classifies subpages within each split candidate into
hot and cold base pages using their subpage hotness factors
(𝐻𝑖 𝑗 ). When Memtis breaks up huge pages, it unmaps and
frees all-zero (never updated) subpages to reduce memory
usage. Finally, it migrates each subpage into the appropriate
memory tier. Coalescing base pages into a huge page is also
expensive and it requires to consider the potential hotness
and access skewness of the newly coalesced huge page. Thus,
Memtis coalesces base pages only when all constituent base
pages are hot. Coalescing rarely happens because Memtis
enables transparent huge page (THP) and splinters allocated
huge pages conservatively.

5 Implementation
We implementedMemtis in Linux Kernel v5.15.19. The total
changed lines of code (LoC) is 5,166.

We utilize the Linux kernel’s compound_page structure to
manage access metadata for huge pages. The compound_page
structure consists of 512 struct pages, each of which is the
metadata for a 4KB physical page frame. Linux kernel uses
the first three struct pages (0–2) for huge page information
itself while the rest are not used. We leverage the unused
struct pages (3–131) to store the huge page access meta-
data (in 3) and subpage access metadata (in 4–131). In this

way, Memtis manages the metadata for huge pages and their

subpages without any additional memory overhead.

Storing access metadata of a base page is a bit more
tricky because there is no unused (padding) space in the
struct page used for page cache and anonymous pages. In-
stead of adding an extra field in the struct page, which
makes the size bigger than a cache line (64B), we leverage
a PTE page frame of a page table. Since struct page for a
PTE page frame has an unused, 8-byte padding space, we
re-purposed this unused field as a pointer to a 4KB metadata
page, which contains 512 metadata entries for 512 base pages.
In the worst case, where all pages are base pages, the memory

overhead ofMemtis is at most 0.195% of the memory footprint.

6 Evaluation
We evaluate Memtis by answering the following questions:
• How does Memtis perform with real-world memory-
intensive applications compared to state-of-the-art mem-
ory tiering systems? (§6.2)

• How effective is Memtis’s optimization? (§6.3)
• WouldMemtis still be effective on CXL-based tiered mem-
ory systems? (§6.4)

6.1 Evaluation Methodology

Hardware setup. We evaluatedMemtis on a dual-socket
server equipped with Intel Xeon Gold 5218R @2.1 GHz pro-
cessors (20 cores), where each socket has 6×16GB DDR4

Benchmark RSS RHP Description

Graph500 66.3 GB 99.9% Generation and search of large graphs [52]

PageRank 12.3 GB 99.9% Compute the PageRank score of a graph [12]
(Twitter dataset [37])

XSBench 63.4 GB 100% Computational kernel of the Monte Carlo
neutron transport algorithm [74]

Liblinear 67.9 GB 99.9% Linear classification of a large data set
(KDD12 dataset) [45]

Silo 58.1 GB 97.4% In-memory database engine [75]
Btree 38.3 GB 75.2% In-memory index lookup benchmark [1]
603.bwaves 11.1 GB 99.5% Explosion modeling in SPEC CPU 2017 [20]
654.roms 10.3 GB 96.6% Regional ocean modeling in SPEC CPU 2017 [20]

RSS: Resident Set Size RHP: Ratio of Huge Pages Allocated with THP
Table 2. Benchmark characteristics.

Benchmark Over-allocation size Benchmark Over-allocation size

Graph500 60 MB Silo 1400 MB
PageRank 500 MB Btree 9800 MB
XSBench 420 MB 603.bwaves 1900 MB
Liblinear 90 MB 654.roms 900 MB

Table 3. Over-allocation sizes of HeMem.

DRAM and 6×128GB Intel Optane DCPMM. To demonstrate
Memtis’s generality and robustness, we use two different
tiered memory settings: 1) DRAM + NVM (Optane DCPMM,
load: 300ns) and 2) DRAM + emulated CXL memory (cross-
NUMA DRAM with increased latency, load: 177ns). Similar
to prior works [49, 68, 84], we use a single socket for our
evaluations to avoid NUMA effects, which are out of scope
of this paper.
Benchmarks. We choose eight representative memory-
intensive applications, including graph processing
(Graph500, PageRank), an HPC workload (XSBench),
machine learning (Liblinear), an in-memory database
engine (Silo), an in-memory index lookup (Btree), and SPEC
CPU 2017 (603.bwaves, 654.roms). These benchmarks are
widely used to evaluate tiered memory systems [36, 68],
huge page management [26, 38, 57, 67], and large memory
servers [2, 5, 56]. Note that we choose only two benchmarks
from SPEC CPU 2017 since they are the only ones that
consume more than 10GB memory. We ran all these
benchmarks with 20 threads, stressing all CPU cores,
to account for any CPU overheads from sampling and
migration ofMemtis. Table 2 shows the detailed benchmark
description, including memory size and the ratio of huge
pages allocated.
Comparison targets. We compare Memtis to six state-of-
the-art systems: AutoNUMA [76], AutoTiering [32], Tiering-
0.8 [78], TPP [49], Nimble [84], and HeMem [68]. We report
the relative performance normalized to the performance of
the all-NVM case with THP enabled, where each benchmark
runs entirely on the capacity tier for easy comparison.
Tiering configurations. We configured the ratio of fast
to capacity tier memory size as 1:2, 1:8, and 1:16. In the
1:2 configuration, the fast tier size is set to 33% (1/3) of the
resident set size (RSS) for each benchmark (shown in Ta-
ble 2), while in the 1:16 configuration, it is reduced to 5.9%
(1/17). To control the size of the fast tier, we used a memory



cgroup interface for Memtis and Nimble. For AutoNUMA,
AutoTiering, Tiering-0.8, and TPP, we changed the kernel
boot argument (memmap GRUB option [65]) to limit the fast
tier size. We configured HeMem’s fast tier size at compile
time. However, HeMem always places small allocations in
the fast tier, so the actual fast tier usage could be larger than
the configured size. For a fair comparison, we measured such
small allocations on the fast tier (denoted as over-allocation
size), as shown in Table 3, and accounted for them by reduc-
ing the configured fast tier size by the amounts in Table 3
when compiling the HeMem code. This specific setting for
HeMem was consistently maintained throughout our evalu-
ation, unless explicitly stated otherwise.
6.2 Performance Comparison

Figure 5 shows the performance comparison of tiered mem-
ory systems when using NVM as the capacity tier. Memtis
performs the best in almost all cases (23/24), and its geomean
performance is 33.6% higher than the second-best system.
Although TPP has the second-best performance in 14 out of
24 cases (8 benchmarks each of which has 3 memory config-
urations), it also shows the worst performance in PageRank
at the 1:2 configuration. Our experimental results show that
Memtis performs well under various memory settings and
access patterns. We now present the detailed analysis for
each benchmark.
6.2.1 Graph Processing: Graph500 and PageRank.
Graph500 [52] generates a graph and conducts a BFS search
for 64 keys. Similarly, the GAP benchmark [12] uses the Twit-
ter dataset [37] to generate the graph and runs 20 iterations
of the PageRank algorithm. Both benchmarks access a large
memory region frequently during the graph generation. Dur-
ing the search phase, they frequently access a small memory
region. Also, their huge page utilization is high.Memtis can
differentiate the page access frequencies in the generation
phase and detect hot pages in the search phase in a timely
fashion. As a result, Memtis outperforms the second-best
system by 16.3%–17.7% for Graph500 and 10.2%–47.9% for
PageRank, as shown in Figure 5(a) and Figure 5(b).
The gain of other systems heavily depends on memory

access patterns and configurations. For example, TPP is the
second-best in Graph500 but not in PageRank. HeMem also
shows lower performance due to its static thresholds and
high CPU usage (≈ 100%) of the sampling thread.
6.2.2 HPC Workload: XSBench. Our analysis reveals
that XSBench has a very skewed hot memory region allo-
cated at an early stage. Memtis quickly identifies the entire
hot memory region. Then it places all of them in the fast tier
using huge pages. As a result of precise hot set detection and
usage of huge pages, Memtis, even under the 1:16 setting,
outperforms others except AutoNUMA in the 1:2 setting.
Existing systems excluding AutoNUMA actively demote

pages in the fast tier to make room for future allocations
and promotions, leading to the demotion of huge pages in

Figure 5. The performance comparison of Memtis against other
systems under various tiering settings (fast tier vs. capacity tier
= 1:2, 1:8, 1:16). We used NVM as capacity tier memory and re-
sults solely using NVM (with THP) as baseline performance. With
HeMem, we failed to run several benchmarks in the 1:8 and 1:16
settings as we could not enforce the fast tier size due to excessive
small-sized allocations by the benchmark. Memtis performs best in

most cases (23/24) and outperforms the second-best systems by 33.6%

on average (geomean).

an eager manner. Thus, their performance depends on how
quickly they promote hot pages again. HeMem classifies
only 2–30MB as hot data (shown in Figure 2), thereby un-
derutilizing the rest of the fast tier. Ironically, AutoNUMA
lacks the demotion feature, so it cannot demote the early
allocated hot pages, thus showing better performance in the
1:2 configuration.

6.2.3 Machine Learning: Liblinear. We ran the Liblin-
ear benchmark [45] with KDD12 dataset. As Figure 3a shows,
hot huge pages of Liblinear have high utilization. Memtis
preferentially places hot pages with high utilization in the
fast tier, resulting in high hit ratios ranging from 96.39% to
99.99%. As a result, Memtis outperforms the second-best by
17.3%–43.7%, as shown in Figure 5(d).

TPP shows the second-best performance in Liblinear. TPP
identifies more hot pages than the fast tier size for 1:16 and
1:8 configurations due to its coarse-grained, 2Q LRU-based
hot page classification. So, it could not place the hottest pages
in the fast tier while continuously migrating pages between
memory tiers. Even though the fast tier can hold additional



hot pages in the 1:2 setting, TPP could not immediately detect
them due to its unscalable page table scanning.

6.2.4 In-Memory Database Engine: Silo. We ran
Silo [75] using the YCSB-C workload [18] following a
Zipfian distribution. We populated 400 million key-value
pairs and performed 15 billion lookup operations. The
key and value sizes are 64B and 100B, respectively. Silo
frequently accesses only 5–15% of subpages in a huge
page, as analyzed in Figure 3b. With such a low huge page
utilization and high skewness, it is hard to fully harness the
fast tier due to underutilized cold subpages in a huge page.
Figure 5(e) shows the superior performance of Memtis,

where it outperforms the second-best by 15.9%, 21.2%, and
7.1% for 1:2, 1:8, and 1:16, respectively. The performance gain
comes from our skewness-aware huge page split. Memtis
effectively finds skewed hot huge pages, splits them, and
migrates their hot subpages to the fast tier. The RSS remains
unchanged after the split since there is no memory bloat due
to huge pages (i.e., all cold subpages are accessed).
Nimble generates massive page migration (56.43× more

than Memtis), resulting in poor performance. Nimble classi-
fies pages as hot if they are accessed just once during the scan
interval. Silo accesses a lot of huge pages, so the identified
hot set is much larger than the fast tier size.

6.2.5 In-Memory Index Lookup: Btree. We measured
the lookup performance of an in-memory Btree [1]. We pop-
ulated the Btree with 157 million key-value pairs and per-
formed 8 billion random lookup operations. The key and
value sizes are 8B and 16B, respectively. Our analysis indi-
cates that this benchmark has skewed access patterns and
low huge page utilization (mostly 8.3–12.5%). The root cause
of low utilization is memory bloat, a notorious problem of
huge pages wasting memory [38, 57]. In practice, using huge
pages improves the Btree performance by 12.5% when we
run it entirely on the fast tier, but it severely increases the
RSS from 15.2GB to 38.3GB.
Figure 5(f) shows that Memtis outperforms the second-

best system by 15.5%–18.9%. In particular, the performance
benefit ofMemtis mostly comes from skewness-aware huge
page split, as will be shown in Figure 11. Our huge page split
reduces the RSS under the 1:2, 1:8, and 1:16 configurations
from 38.3GB to 36.95GB, 27.2GB, and 20.9GB, respectively.

6.2.6 SPEC CPU 2017: 603.bwaves and 654.roms. We
ran 603.bwaves and 654.roms with reference (ref) input size.
As shown in Figure 5(g) and Figure 5(h),Memtis outperforms
the second-best system by 1.3%–10.6% in 603.bwaves and
5.7%–35.9% in 654.roms.
603.bwaves allocates short-lived and long-lived data.

Tiering-0.8, TPP, and Memtis allocate short-lived data to
the free space in the fast tier reserved for new allocations.
AutoTiering uses the background thread for demotion to
reserve free pages in the fast tier but it utilizes them only for

promotion. Thus, it always allocates short-lived data to the
capacity tier, thereby showing lower performance.

Figure 6. Performance compari-
son under varying memory sizes.

6.2.7 Scalability. We
evaluate Memtis by
increasing the RSS of
Graph500 from 128GB
to 690GB. The fast tier
size is 64GB in all exper-
iments. Figure 6 shows
that Memtis outperforms
the second-best by 8.1%–
60.5%, as the RSS increases.
HeMem shows the second-
best performance when the
RSS is 336GB and 690GB. These results clearly demonstrate
the effectiveness of PEBS and the importance of precise
hotness classification.

Figure 7. The performance of
Memtis and TPP under the 2:1
configuration.

Figure 8. The performance of
Memtis and HeMem with 16
threads.

6.2.8 2:1 Configuration. We also evaluate Memtis on a
2:1 configuration, which is Meta’s default production target
environment [49]. TPP was originally designed for this en-
vironment. Figure 7 presents the performance of TPP and
Memtis, along with the all-DRAMperformance with or with-
out using THP for reference. Although sampling-based mem-
ory access tracking has inherent limitations in detecting
rarely accessed pages, Memtis is still effective even under
the 2:1 configuration and exhibits comparable performance
to the all-DRAM cases, except for the SPEC benchmarks.
Memtis outperforms TPP by 6.1%–33.3% when the capac-
ity of sampled pages is larger than the fast tier capacity.
Memtis shows similar performance to TPP when there is a
small set of explicit hot pages relative to the fast tier capacity
(PageRank, XSBench, and Liblinear). In this case, Memtis
promotes pages to the fast tier as soon as they are sampled
once, resulting in a high access ratio to the fast tier memory
(> 99.5%).
6.2.9 Detailed Comparison to HeMem. We compare
the performance of Memtis against HeMem on HeMem’s
most favorable settings. First, the performance of HeMem
could be affected by CPU contention caused by its sam-
pling threads. Thus, we conducted all experiments with 16
threads, leaving the other cores available for HeMem’s ser-
vice threads. Second, the configured fast tier size of HeMem



Figure 9.Amount of hot, warm, and cold data identified byMemtis
in two tiering settings. The dashed line indicates the fast tier size.

is smaller than that of other systems, as mentioned in §6.1,
and this could affect the performance of HeMem. So, we
additionally measure the performance of HeMem under sce-
narios where HeMem’s configured fast tier size is same as
that of Memtis. In this case, HeMem consumes more fast
tier capacity thanMemtis by the amounts in Table 3. This
performance is labeled as HeMem+ in Figure 8. Note that
the experiments are performed under the 1:2 configuration.

The results clearly indicate that Memtis consistently out-
performs HeMem when no CPU contention exists. The pri-
mary factor contributing to HeMem’s performance degra-
dation lies in its reliance on page classification based on
static thresholds. The degradation is similarly observed in
HeMem+. For instance, in PageRank, HeMem+ harnesses
additional fast tier capacity (over-allocated one) of 500MB
compared to HeMem but its performance does not show
improvement. This is because HeMem+ wastes a part of fast
tier memory with arbitrary cold pages, as shown in Figure 2.
Interestingly,Memtis also achieves higher performance than
HeMem+ in Btree, which entails an over-allocation size of
9800MB. We measured a version of Memtis employing only
the histogram-based hot set classification, and found that
it performed only 1.4% below HeMem+. Further enabling
the skewness-aware huge page split leads to an impressive
performance enhancement of 22.6% over HeMem+.

6.3 UnderstandingMemtis Performance

This section analyzes the impact of each optimization tech-
nique in Memtis. In particular, we discuss 1) the accuracy
of access distribution-based hot set classification (§6.3.1), 2)
how much page migration traffic is reduced using the warm
set and splitting the huge pages (§6.3.2), 3) how huge page
splits affect performance and memory footprint (§6.3.3), 4)
the sensitivity ofMemtis to threshold adaptation and cool-
ing intervals (§6.3.4), and 5) the overheads of PEBS-based
access tracking (§6.3.5).

6.3.1 Effectiveness of Hot Set Classification. Figure 9
shows the amount of hot, warm, and cold memory identified
byMemtis at runtime. Overall, the identified hot set size is
very close to the fast tier size (denoted by the black dashed

Figure 10. Impact of the use of warm set and huge page split on
performance and memory migration traffic.

Figure 11. Performance of Silo and Btree over time.We ranMemtis
with and without huge page split (Memtis vs.Memtis-ns). We also
provide the performance of the second-best system (Tiering-0.8).

line). Memtis identifies a hot set as large as the fast tier size
using the page access histogram. The identified hot set could
be below the fast tier size according to the histogram status
with the warm pages filling the remaining fast tier. Although
it is possible that the hot set temporarily exceeds the fast tier
size since many warm/cold pages could become hot before
adjusting𝑇ℎ𝑜𝑡 ,Memtis can quickly recover the hot set. Such
hot set management is impossible without considering the
overall memory access distribution.

6.3.2 Reducing Memory Migration with Warm Set.
Memtis effectively reduces memory migration traffic. Since
warm pages could be getting cooler or hotter, Memtis can
reduce significant migration traffic by not migrating such
warm pages (2.7%–64.8% as in shown Figure 10). In addition,
splitting huge pages somewhat reduces migration traffic,
owing to the migration of smaller-sized pages. However, us-
ing the warm set degrades the performance in 603.bwaves;
a large warm set makes it difficult to quickly reserve free
space in the fast tier, and hence, a part of the short-lived
allocations are handled in the capacity tier.

Figure 12. Fast tier hit ratios.

6.3.3 Impact of Huge
Page Split. Figure 11 shows
the performance of Silo and
Btree benchmarks over time
in the 1:8 configuration. Our
skewness-based huge page
split improves the overall
performance by 10.6% for Silo
and 10.4% for Btree (Memtis
vs. Memtis-ns, where ns stands for no split). For Silo,
Memtis detects the highly skewed huge pages in the fast
tier at about 80s and starts splintering them. After a small
performance dip right after the split, it quickly surpasses
other works by detecting hot subpages and migrating them
to fast tier memory. For Btree, where huge pages cause



(a) Threshold adaptation intervals (b) Cooling intervals
Figure 13. Sensitivity results for both threshold adaptation inter-
vals and cooling intervals in the 2:1 configuration, normalized by
the performance of the default setting. Note that the black vertical
line indicates the default parameter value.

severe memory bloat, Memtis detects the skewed huge
pages and begins splitting them near 800s. This improves
throughput by up to 19.9% (at 2410s) and reduces RSS by
28.96% (38.3GB→27.2GB as discussed in §6.2.5).

Figure 12 compares three types of hit ratios in the 1:8 con-
figuration: 1) 𝑒𝐻𝑅 – the estimated hit ratio when only base
pages are used, 2) 𝑟𝐻𝑅 – the actual hit ratio with our huge
page split, and 3) 𝑟𝐻𝑅-ns – the actual hit ratio of Memtis-ns
without using our huge page split. Silo and Btree exhibit a big
gap between 𝑒𝐻𝑅 and 𝑟𝐻𝑅-ns, at 64.1% and 36.42%, respec-
tively. Memtis splinters huge pages, improving the hit ratio
(𝑟𝐻𝑅) by 52.91% for Silo and 19.92% for Btree. Huge page split
does not result in performance improvements in 654.roms,
but it improves the hit ratio by 2.25% and reduces page mi-
gration by 26.6%.Memtis has very low 𝑟𝐻𝑅 in 603.bwaves,
which repeatedly allocates and frees short-lived data. Since
Memtis always tries to secure some free space in the fast
tier for new allocations, the repetitive allocations of short-
lived data lead to frequent demotions of hot pages. Thus,
huge page split does not increase 𝑟𝐻𝑅 in this case. Note that
𝑒𝐻𝑅 could be lower than 𝑟𝐻𝑅 as in Graph500 and PageRank,
when there is no access skew and/or strong spatial locality
in the huge pages. In such cases, there is no need to split
huge pages.

6.3.4 Parameter Sensitivity. To assess the sensitivity of
Memtis to threshold adaptation and cooling intervals, we
conduct a sensitivity study by varying them from one-tenth
of the default interval to ten times that. Note that each inter-
val is represented by the number of sampled events collected
under dynamically adjusted sampling rates, ranging from
one sample every 200 to 1400 underlying events. As shown
in Figure 13,Memtis shows a robust insensitivity to changes
in both intervals except for the case of a 1M adaptation in-
terval (i.e., ten times the default adaptation interval). An
excessively extended interval undermines the efficacy of our
histogram-based hot set classification method, particularly
when dealing with applications possessing small resident
set sizes. In such scenarios, the fast tier capacities assigned
to these applications are also quite limited, causing the hot
set size identified over the extended interval to potentially
exceed the fast tier size. In this case, the fast tier is filled with
an arbitrary set of hot pages, instead of hottest ones.

Figure 14. Performance comparison betweenMemtis and TPP [49]
using (emulated) CXL memory as capacity tier.

6.3.5 The Overheads of Access Tracking. ksampled dy-
namically adjusts the PEBS sampling interval based on its
CPU usage. For example, ksampled increases its period from
once for every 200 events to that for every 1400 events in
654.roms to limit its CPU usage. On the other hand, ksampled
keeps its initial period in 603.bwaves because its CPU usage
is always lower than the upper limit (3%). As a result, the
average CPU usage of ksampled is only 2.016% of a single
CPU (3.0% maximum). Accordingly, its performance implica-
tions on evaluated benchmarks are also modest: 0.922% on
average and up to 2.384%.

6.4 Performance with CXL Memory

To explore howMemtiswill work with upcoming CXLmem-
ory, we ran with an emulated CXL memory as the capacity
tier.2 We emulated CXLmemory using a remote NUMA node
and decreased the cross-NUMA interconnect frequency. We
set the access latency of emulated CXL memory to 177ns
since previous studies report that CXL adds 70-90ns to local
memory access [42]. Note that we only consider directly-
attached CXLmemory supported by CXL 1.1 since we expect
accessing memory via CXL switches has a much higher la-
tency, similar to or even more than NVM access latency.
Figure 14 compares Memtis against TPP [49] since TPP

is specifically designed for CXL-based tiered memory sys-
tems. As the latency gap between memory tiers decreases
compared to the NVM case in Figure 5, the performance gap
between TPP and Memtis becomes smaller as well. How-
ever, Memtis outperforms TPP in all evaluated benchmarks
by up to 32.8%, 102.9%, 39.2%, 27.1%, 16.4%, 12.4%, 32.3%,
and 23.2% for Graph500, PageRank, XSBench, Liblinear, Silo,
Btree, 603.bwaves, and 654.roms, respectively. Thus, due to
its generality, we believe Memtis will be beneficial when
CXL memory is finally available.

7 Related Work

Software-based tiered memory system. Prior software-
controlled tiered memory systems have explored the design
space in various aspects including page migration [34, 71, 83,
84], hotness detection [4, 15, 41], page replacement [28, 48],
and kernel object tiering [31, 36] at different layers such
as the application [29, 44, 69, 79], library [21, 54, 68], and
OS [14, 27, 30, 32, 76, 78]. HotBox [14] suggests not using
huge pages in tiered memory systems due to the hotness

2As of this writing, there is no publicly available CXL memory hardware.



fragmentation in huge pages. Thermostat [4] precisely de-
tects the access frequency of huge pages using page faults,
which incur significant tracking overhead. MaPHeA [54] is
a profile-guided optimization technique for heap allocations.
It relies on offline profiling, so it is not suited to identify
dynamically changing memory access patterns at runtime.
Anti-thrashing mechanisms. HeMem halts both page
promotion and demotion when the hot set size exceeds the
fast tier size to prevent unnecessary page thrashing among
hot pages. TMTS handles all page allocations in the fast tier,
and those pages are subsequently protected from demotion
for an extended period due to TMTS’s demotion policy [22].
This behavior can prevent page thrashing for short-lived allo-
cations.Memtis’s hotness identification ensures that really
hot pages are always placed in the fast tier while minimizing
unnecessary page thrashing with warm pages.
Hardware support for tiered memory system. Several
studies have focused on hardware mechanisms for heteroge-
neous memory management [8, 16, 33, 35, 66, 72, 73, 80].
They usually target GPU memory or small-sized HBM.
PRISM [9] provides architectural support for variable-sized
metadata, such as access bits and dirty bits, by decoupling
memory metadata from page size. Their approach enables
subpage access tracking for huge pages.
Huge page management. There have been many prior
studies on huge page management [13, 23, 26, 38, 43, 47, 50,
53, 57, 58, 67, 87]. They have focused on methods to allocate
huge pages, usually under fragmented physical memory, but
not for tiered memory systems. None of them, including
HawkEye [57], considers skewed accesses when splitting
huge pages. Similarly, a kernel patch proposal, called THP
Shrinker [86], also splinters huge pages that have many ze-
roed subpages to reduce huge page-induced memory bloat.

8 Discussion

Comparison to TMTS. TMTS [22] and Memtis serve dis-
tinct design objectives that could potentially complement
each other. TMTS primarily focuses on replacing a portion
of its DRAM usage with the slower memory tier to reduce
memory cost while minimizing performance impact (<5%),
rather than expanding the system memory capacity. TMTS
sets its target secondary tier residency ratio (STRR) to 25%,
which aligns well with the cold memory ratio observed in
WSCs [22, 39, 81]. The demotion and promotion policies of
TMTS are designed to maintain secondary tier access ratio
(STAR) of applications to remain within the target range
(<0.5%), especially in scenarios where the hot working set of
applications can fit within the fast tier. TMTS classifies cold
pages by identifying idle ages of pages through the kernel
daemon, kstaled [39], constructing a cold age histogram [39],
and adapting the demotion age threshold. Its criteria to se-
lect promotion candidates (i.e., hot pages) is rather simple;

one access by PEBS or at least two accesses by page table
scanning.

Challenges may arise when TMTS operates on tiered mem-
ory systems with large capacity tier memory (e.g., 1:2, 1:8,
1:16 configs.). The hot working set of applications could eas-
ily exceed the fast tier capacity in such environments, and
this is not a scenario that TMTS mainly targets. In this case,
its node agent, Borglet, and the cluster-level Borg sched-
uler [77] may evict applications to maintain the total hot
working set size below the fast tier capacity on a machine
(and thereby protect the performance SLOs of applications).
Extending TMTS to suit such scenarios might require a recon-
sideration of STAR and STRR, as well as page classification
policies, which Memtis could potentially complement.

TMTS andMemtis also adopt different approaches to huge
page management in determining which huge pages to split,
when to execute the split, and how many huge pages to split.
In TMTS, all demoted huge pages, which are entirely cold
and hence do not have any access skewness, undergo split-
ting upon demotion. Additionally, TMTS utilizes application-
level hints to allocate memory objects with similar hotness
together within a huge page in TCMalloc, thereby allevi-
ating the access skewness problems within huge pages. In
contrast,Memtis performs the split only when it is expected
to improve the 𝑟𝐻𝑅, specifically targeting huge pages with
high access skewness.
Limitations. Hardware event-based sampling like PEBS
has inherent limitations in distinguishing hotness among
rarely (or never) accessed pages which are not likely to be
sampled, so hotness detection for such pages would be inac-
curate. Similar to TMTS, incorporating page table scanning
with memory access sampling is a potential solution to alle-
viate these limitations, although it could introduce runtime
overhead without yielding performance benefits.

9 Conclusion

We presentMemtis, a novel tiered memory system.Memtis
incorporates dynamic hot set classification based on memory
access distribution, enabling it to utilize almost the entirety
of fast tier memory for the hottest data. Memtis determines
page size at runtime to harness the advantages of huge pages
while suppressing their downsides by considering their skew-
ness and expected benefits. Our extensive evaluation shows
that Memtis outperforms state-of-the-art tiering systems in
a wide range of workload types and memory configurations,
all accomplished with bounded CPU and memory overheads.
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