
https://doi.org/10.1145/3297858.3304040
























https://github.com/axboe/fio
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38_5M-Cache-2_50-GHz
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38_5M-Cache-2_50-GHz
https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38_5M-Cache-2_50-GHz
https://doi.org/10.1109/TPDS.2011.159
https://github.com/nmldiegues/tm-study-pact14/tree/master/swissTM
https://github.com/nmldiegues/tm-study-pact14/tree/master/swissTM
http://liburcu.org/
https://www.anandtech.com/show/12694/assessing-cavium-thunderx2-arm-server-reality/2
https://www.anandtech.com/show/12694/assessing-cavium-thunderx2-arm-server-reality/2
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf


[35] Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores
and NVRAM. In Proceedings of the 2015 ACM SIGMOD/PODS Confer-
ence. ACM, Melbourne, Victoria, Australia, 691–706.

[36] FAL Labs. 2011. Kyoto Cabinet: a straightforward implementation of
DBM. http://fallabs.com/kyotocabinet/.

[37] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. 2014. MICA: A Holistic Approach to Fast In-memory Key-value
Storage. In Proceedings of the 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI). Seattle, WA, 429–444.

[38] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017.
Cicada: Dependably Fast Multi-Core In-Memory Transactions. In Pro-
ceedings of the 2017 ACM SIGMOD/PODS Conference. ACM, Chicago,
Illinois, USA, 21–35.

[39] Heiner Litz, David Cheriton, Amin Firoozshahian, Omid Azizi, and
John P. Stevenson. 2014. SI-TM: Reducing TransactionalMemoryAbort
Rates Through Snapshot Isolation. In Proceedings of the 18th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, Salt lake city, UT,
383–398.

[40] Jean-Pierre Lozi, Florian David, Gaël Thomas, Juli a Lawall, and Gilles
Muller. 2012. Remote Core Locking: Migrating Critical-section Exe-
cution to Improve the Pe rformance of Multithreaded Applications.
In Proceedings of the 2012 USENIX Annual Technical Conference (ATC).
USENIX Association, Boston, MA, 6–6.

[41] Linux manual page. 2017. perf Manual. http://man7.org/linux/
man-pages/man1/perf.1.html.

[42] Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier.
2015. Read-log-update: A Lightweight Synchronization Mechanism for
Concurrent Programming. In Proceedings of the 25th ACM Symposium
on Operating Systems Principles (SOSP). ACM, Monterey, CA, 168–183.

[43] Paul E. McKenney. 1998. Structured Deferral: Synchronization via
Procrastination. ACM Queue (1998), 20:20–20:39.

[44] Paul E. McKenney. 2012. RCU Linux Usage. http://www.rdrop.com/
~paulmck/RCU/linuxusage.html.

[45] Paul E. McKenney, Jonathan Appavoo, Andy Kleen, Orran Krieger,
Rusty Russell, Dipankar Sarma, and Maneesh Soni. 2002. Read-Copy
Update. In Ottawa Linux Symposium (OLS).

[46] Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalabil-
ity! But at what COST?. In 15th USENIX Workshop on Hot Topics in
Operating Systems (HotOS) (HotOS XV). USENIX Association, Kartause
Ittingen, Switzerland.

[47] Maged M. Michael. 2002. Safe Memory Reclamation for Dynamic
Lock-free Objects Using Atomic Reads and Writes. In Proceedings of
the 21st ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC). Monterey, California, 21–30.

[48] Changwoo Min, Sanidhya Kashyap, Steffen Maass, Woonhak Kang,
and Taesoo Kim. 2016. Understanding Manycore Scalability of File
Systems. In Proceedings of the 2016 USENIXAnnual Technical Conference
(ATC). USENIX Association, Denver, CO, 71–85.

[49] Donald Nguyen and Keshav Pingali. 2017. What Scalable Programs
Need from Transactional Memory. In Proceedings of the 22nd ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, Xi’an, China, 105–
118.

[50] Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosk-
ing, Richard L. Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana
Shpeisman. 2007. Open Nesting in Software Transactional Memory.
In Proceedings of the 6th ACM Symposium on Principles and Practice of
Parallel Programming (PPoPP). ACM, SAN Francisco, CA, USA, 68–78.

[51] Oracle. 2004. Oracle Database Concepts 10g Release 1 (10.1) Chapter 13 :
Data Concurrency and Consistency âĂŤ Oracle Isolation Levels. https:
//docs.oracle.com/cd/B12037_01/server.101/b10743/consist.htm.

[52] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin
Ma, Prashanth Menon, Todd Mowry, Matthew Perron, Ian Quah, Sid-
dharth Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi
Wang, Yingjun Wu, Ran Xian, and Tieying Zhang. 2017. Self-Driving
Database Management Systems. In Proceedings of the 39th biennial
Conference on Innovative Data Systems Research (CIDR). Chaminade,
California.

[53] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T.
Morris. 2012. Improving Network Connection Locality on Multicore
Systems. In Proceedings of the 7th European Conference on Computer
Systems (EuroSys). ACM, Bern, Switzerland, 337–350.

[54] PostgreSQL. 2018. Serializable Snapshot Isolation (SSI) in PostgreSQL.
https://wiki.postgresql.org/wiki/SSI.

[55] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. 2017. Ffwd:
Delegation is (Much) Faster Than You Think. In Proceedings of the
26th ACM Symposium on Operating Systems Principles (SOSP). ACM,
Shanghai, China, 342–358.

[56] Alexander Spiegelman, Guy Golan-Gueta, and Idit Keidar. 2016. Trans-
actional Data Structure Libraries. In Proceedings of the 2016 ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI). ACM, Santa Barbara, CA, 682–696.

[57] Paul Teich. 2017. The New Server Economies of Scale
for AMD. https://www.nextplatform.com/2017/07/13/
new-server-economies-scale-amd/.

[58] Bill Thomas. 2018. AMD Ryzen Threadripper 2nd Generation re-
lease date, news and features. https://www.techradar.com/news/
amd-ryzen-threadripper-2nd-generation.

[59] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and
Samuel Madden. 2013. Speedy Transactions in Multicore In-memory
Databases. In Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP). ACM, Farmington, PA, 18–32.

[60] Qi Wang, Timothy Stamler, and Gabriel Parmer. 2016. Parallel Sec-
tions: Scaling System-level Data-structures. In Proceedings of the 11th
European Conference on Computer Systems (EuroSys). ACM, London,
UK, 33:1–33:15.

[61] Tianzheng Wang and Hideaki Kimura. 2016. Mostly-optimistic Con-
currency Control for Highly Contended Dynamic Workloads on a
Thousand Cores. In Proceedings of the 39th International Conference on
Very Large Data Bases (VLDB). VLDB Endowment, New Delhi, India,
49–60.

[62] Wikipedia. 2018. Snapshot isolation. https://en.wikipedia.org/wiki/
Snapshot_isolation.

[63] Chris Williams. 2018. Broadcom’s Arm server chip lives - as Cavium’s
two-socket ThunderX2. https://www.theregister.co.uk/2018/05/08/
cavium_thunderx2/.

[64] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017.
An Empirical Evaluation of In-memory Multi-version Concurrency
Control. In Proceedings of the 39th International Conference on Very
Large Data Bases (VLDB). VLDB Endowment, TU Munich, Germany,
781–792.

[65] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and
Michael Stonebraker. 2014. Staring into the Abyss: An Evaluation of
Concurrency Control with One Thousand Cores. In Proceedings of the
39th International Conference on Very Large Data Bases (VLDB). VLDB
Endowment, Hangzhou, China, 209–220.

[66] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas.
2016. TicToc: Time Traveling Optimistic Concurrency Control. In
Proceedings of the 2015 ACM SIGMOD/PODS Conference. ACM, San
Francisco, CA, USA, 1629–1642.

[67] Yang Zhan and Donald E. Porter. 2010. Versioned Programming: A
Simple Technique for Implementing Efficient, Lock-Free, and Compos-
able Data Structures. In Proceedings of the ACM International Systems
and Storage Conference. ACM, California, USA, 11:1–11:12.

Session: Synchronization ASPLOS’19, April 13–17, 2019, Providence, RI, USA

792

http://fallabs.com/kyotocabinet/
http://man7.org/linux/man-pages/man1/perf.1.html
http://man7.org/linux/man-pages/man1/perf.1.html
http://www.rdrop.com/~paulmck/RCU/linuxusage.html
http://www.rdrop.com/~paulmck/RCU/linuxusage.html
https://docs.oracle.com/cd/B12037_01/server.101/b10743/consist.htm
https://docs.oracle.com/cd/B12037_01/server.101/b10743/consist.htm
https://wiki.postgresql.org/wiki/SSI
https://www.nextplatform.com/2017/07/13/new-server-economies-scale-amd/
https://www.nextplatform.com/2017/07/13/new-server-economies-scale-amd/
https://www.techradar.com/news/amd-ryzen-threadripper-2nd-generation
https://www.techradar.com/news/amd-ryzen-threadripper-2nd-generation
https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Snapshot_isolation
https://www.theregister.co.uk/2018/05/08/cavium_thunderx2/
https://www.theregister.co.uk/2018/05/08/cavium_thunderx2/

	Abstract
	1 Introduction
	2 Overview of MV-RLU
	2.1 Programming Model
	2.2 Multi-Versioning
	2.3 Garbage Collection
	2.4 Consistency Guarantee

	3 Design of MV-RLU
	3.1 Design Goals
	3.2 Version Representation
	3.3 Reading an Object
	3.4 Writing an Object
	3.5 Commit a Write Set
	3.6 Abort a Critical Section
	3.7 Garbage Collection
	3.8 Freeing an Object
	3.9 Timestamp Allocation

	4 Correctness of MV-RLU
	4.1 Definitions
	4.2 Garbage Collection
	4.3 Timestamp Allocation
	4.4 Isolation Guarantee

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Concurrent Data Structures
	6.3 Factor Analysis
	6.4 Applications

	7 Discussion and Limitations
	8 Related Work
	9 Conclusion
	References



