N\

RUTGERS SAMSUNG) igalia

A
-
1766

OmniCache: Collaborative Caching for
Near-storage Accelerators

Jian Zhang, Yujie Ren, Marie Nguyen, Changwoo Min, Sudarsun Kannan

Caches are Ubiquitous!

* Caches are present across different layers of the computer system

CPU

Host-level Cache
(e.g., page cache)

& |
~ [N N]
o o’

o’ s

* Besides, technologies like CXL can easily interconnect all caches Storage

* Exploiting and combing all caches cumulatively can accelerate 1/O and
data processing performance

* Proposed: Combining host-level /O cache with near-storage cache

NIC

* How to build an efficient caching design for near-storage accelerators!?

Outline

Background

Hardware Trends

Multi-core compute (4-16 cores) DRAM size (4-16GB)
[ARM CSDs] [Newport]

————

Computational Storage

Fast remote memory access with CXL High speed interconnect

[Samsung Memory-Semantic SSDJ] [ScaleFlux]

4

Near-storage Devices Designs

Near-storage Device with Host FS
(PolarDB [FAST ’20], A-IO [FAST 23], etc.)

offload computation tasks

Kernel

Page Cache
File System

DRAM

Storage {m}{m}

Device FS

(DevFS [FAST ‘18], FusionFS [FAST 22])

App
FS Lib

write

DRAM

Kernel

read-compress-write

NearStoreFS

Storage {m}{m}

Outline

Motivation

Failure to Exploit Near-storage Memory

Near-storage Device with Host FS Device FS

App
FS Lib

A

Kernel

Page Cache High kernel overhead

read read-compress-write
Always offload!

File System

Cache miss NearStoreFS

Storage E}E EE Storage {EHEIE

Lack of support to use device memory Failure to utilize host and device memory

High Data Amplification in Host Cache Designs

* Substantial unaligned I/O request ratio in popular real-world applications
* (> 95% requests of the 100 million total I/O requests were unaligned in both DiskANN and RocksDB)

* Unaligned I/O requests cause data amplification in host cache designs

Near-storage Device with Host FS

pread(|KB)

Page Cache
File System 4 - data amplification!
KB
Load 4KB block .Eta ,
------------ block aligned)_
Device caches can reduce data ,+——— (gned)

L}
*

amplification ' Storage {m}{m}

Lack of Concurrent I/O and Data Processing Support

* Application threads stall frequently when host-level cache are full

Near-storage Device with Host FS

compress-write on a different
thread

Kernel

Page Cache
File System

Background eviction

Storage {m} {m}

Failure to exploit device compute and memory impacts concurrent 1/O and processing!

Lack of Dynamic and Concurrent Processing Support

* Current approaches lack capability to dynamically decide where to process (in the host or the device)

Near-storage Device with Host FS

Execute KNN at host
(large graph)
Not using device memory [[7¢Neey

d t
ane compute Page Cache

File System

Storage {m}{m}

Or offload KNN to device @
(large graph)
Limited Device Resources

High data
movement

Outline

Design

Our Solution: OmniCache

A horizontal caching design to exploit the combined capabilities of
near-storage, host compute, and their memory resources to accelerate
/O and data processing

|1 1
Host E I Host é |
|

Device I Device
h 4
DevCache Storage DevCache
Storage

Vertical Caching Horizontal Caching

q!!F

OmniCache Overview

* Horizontal caching design to exploit host and device memory m_
| 1
Host
* Accelerates I/O and data processing with collaborative caching @
Dynamically offload ts to host or devi e -
* Dynamically offloads requests to host or device
yramically q

* OmniCache exploits CXL for reducing host-device communication costs OmniCache

OmniCache Components

UserLib
* Support POSIX API
* Provide predefined I/O and data processing functions

* Omnilndex l l
* Provides a unified cache view across host and device UserLib
* Delegates cache managementtohost | PRl (B erererasaseses O/I\o
* Fine-grained concurrency control Omnilndex
« OmniDynamic Device *
* Dynamically offloads requests between host and device
Storage

NearStorageF$S
* Handles I/O and data processing request
* Manages file data and metadata

Concurrent I/O and Processing Example

Threadl
pwrite()

Thread?2

read-checksum-write()

UserLib

{m} {m} &
Device CPU

Omnilndex:
(per-file) :
2M) :

Reduce Read/Write Amplification

* OmniCache reduces amplification by increasing data access on the nearest cache

Threadl
pread(fdl, buf, IKB, 0)

"a
L}
]
C&O IKB
.
03
3
03
*
3
-
*
3
-

Omnilndex

Only KB data movement across devices _
YA 2

Device DevCache| &
N
Low access latency within the device - KB \

|

Near-storage cache overcomes alighment-related amplification issues

16

Concurrent I/O and Data Processing Support

* Minimizes application stalls by collaboratively using HostCache and DevCache

App

write / \ checksum-write

UserLib

e

Background eviction

\

Device

A 4

VvV Vv

¥

Offload and write data to device
cache concurrently without stalling

Horizontal paradigm for caches can reduce frequent application stalls!

Collaborative Data Processing

* OmniCache collaboratively uses HostCache and DevCache for processing

UserLib

M read-distance-nearestK()

Execute at Host
A

OmniDynamic

Device

DevCache

v

: read-distanc%-nearestK() — predict()
DevCache

L L
Execute at Device

How to dynamically determine where to process?

Model-driven Dynamic Offloading

* Processing speed depends on factors such as data ratio, processor cache, queuing delay
* OmniCache continuously monitors host/device resources before offloading
* Model estimates processing time across host and device to identify a request's location

* Model = Data Transfer Cost + Queuing Latency + Execution Time

Please see paper for more details!

CXL Extensibility for OmniCache

* CXL can enable host compute to directly access device memory! |
atency

(~170-250ns)

* CXL.mem maps device memory to the host as a NUMA node Device memory
address space

* Reduces I/O queuing delays, and CPU polling overheads for OmniCache

DevCache

NearStoreFS

Storage Media

CXL Device

20

Outline

Evaluation

Experimental Setup

* Hardware platform

* Dual-socket 64-core Xeon Scalable CPU @ 2.6GHz
* 512GB Intel Optane DC NVM

* Emulated in-storage FS (no programmable storage H/W)
* Dedicate device threads for handling I/O requests
* Add PCle latency for all I/O operations
* Reduce CPU frequency for device CPUs (and memory bandwidth)

* State-of-the-art designs
* NOVA [FAST’ 16] (Kernel-level FS)
* FusionFS and User-level host cache atop FusionFS [FAST 22] (Device-level FS)
* Emulated A-10 without FPGA but with OS caching [FAST 23] (near-storage design)

Evaluation Goals

* Understand effectiveness of OmniCache for reducing /O overheads

Microbench

* Each thread issues |KB I/O requests, resulting in a total workload size of 64GB
* HostCache-user-level and lambda-1O-emulate employ 20GB host DRAM cache
* OmniCache uses 16GB HostCache and 4GB DevCache

4 - ONOVA 4 -

’\u? @ FusionFS @

(a8)] _ _ o

O 3 4 OHostCache-user-level O 3 -

\: O A-10-emulate ‘:

3 2 4 mOmniCache 3 2 -

< <

))

S | - S | -

¢ Lol ¢ Ll dTl {

c c

0 ' ' . ' 0 ' ’ ' .
| 4 |6 32 I 4 |6 32

of threads # of threads
Random Read Random Write

OmniCache significantly reduces data movement and eviction stalls

24

Evaluation Goals

* Study and validate the benefits of OmniDynamic

Evaluate and validate OmniDynamic

* Each thread randomly reads 4KB data blocks, calculates checksum, and writes it back
* OmniCache-dynamic uses |16GB HostCache and 4GB DevCache

O FusionFS
B HostCache-user-level
3 1 mOmniCache-dynamic

PTF |

of threads

/O + Data Processing (Read-CRC-Write)

-
]

Throughput (GB/s)

o
L

Improves performance by considering hardware/software factors such as
queue delays, host and device load, near-data access

26

Evaluation Goals

* Understand the performance of using CXL.mem

Understand the performance with CXL

¢ CXL emulation: we map device memory as a remote NUMA socket to the host CPUs, but local to
the device CPUs

4 4 OFusionFS

O HostCache-user-level
3 - B OmniCache
B OmniCache-CXL

0
I 4 |6 32
of threads

Throughput (GB/s)
N

Random Write

OmniCache with CXL improves performance by avoiding 1/O
queuing delays and CPU polling cost

Evaluation Goals

* Discuss overall real-world application impact

Real-world Application

Throughput (kop/s)

O FusionFS

B HostCache-user-level

B OmniCache

A

B

W

C
Workloads

YCSB on LevelDB

Throughput (GB/s)

p

O FusionFS
B HostCache-user-level
B OmniCache

|6 32
of threads

KNN

OmniCache also shows high throughput gains on real-world applications

30

Outline

Conclusion

Conclusion

* It’s critical to use all compute and memory resources in the system
* Our approach: OmniCache, a horizontal and scalable caching design

* OmniCache effectively reduces data amplification by collaboratively
using host and device caches

* OmniCache accelerates I/O and data processing by concurrently
using host and device CPUs

* CXL provides substantial benefit with the unified caching design

