
OmniCache: Collaborative Caching for
Near-storage Accelerators

Jian Zhang, Yujie Ren, Marie Nguyen, Changwoo Min, Sudarsun Kannan

1

Caches are Ubiquitous!
• Caches are present across different layers of the computer system

• Exploiting and combing all caches cumulatively can accelerate I/O and
data processing performance

• Proposed: Combining host-level I/O cache with near-storage cache

• Besides, technologies like CXL can easily interconnect all caches

• How to build an efficient caching design for near-storage accelerators?

2

CPU CPU CPU…

Host-level Cache
(e.g., page cache)

…

NICStorage

Cache

• Background
• Motivation
• Design
• Evaluation
• Conclusion

3

Outline

HardwareTrends

4

Computational Storage

CPU

…

Multi-core compute (4-16 cores)
[ARM CSDs]

DRAM size (4-16GB)
[Newport]

High speed interconnect
[ScaleFlux]

Fast remote memory access with CXL
[Samsung Memory-Semantic SSD]

Near-storage Devices Designs

5

Near-storage Device with Host FS
(PolarDB [FAST ’20], λ-IO [FAST ‘23], etc.)

App

offload computation tasks

Page Cache
File System

Kernel

Storage

Device FS
(DevFS [FAST ‘18], FusionFS [FAST ‘22])

App
FS Lib

Storage

write read-compress-write

DRAM

NearStoreFS

Kernel

DRAM

• Background
• Motivation
• Design
• Evaluation
• Conclusion

6

Outline

Failure to Exploit Near-storage Memory

7

Device FS

App
FS Lib

Storage

read read-compress-write

NearStoreFS

Kernel

Failure to utilize host and device memory

DRAM

DRAM

Always offload!

Near-storage Device with Host FS

App

Page Cache
File System

Kernel

Storage

write

Lack of support to use device memory

DRAM

Cache miss

High kernel overhead

High Data Amplification in Host Cache Designs

8

Near-storage Device with Host FS

App

Page Cache
File System

Kernel

Storage

Load 4KB block data
4KB

(block aligned)

1KB

data amplification!

• Substantial unaligned I/O request ratio in popular real-world applications
• (> 95% requests of the 100 million total I/O requests were unaligned in both DiskANN and RocksDB)

• Unaligned I/O requests cause data amplification in host cache designs

pread(1KB)

DRAMDevice caches can reduce data
amplification

Lack of Concurrent I/O and Data Processing Support

9

Failure to exploit device compute and memory impacts concurrent I/O and processing!

Near-storage Device with Host FS

App

Kernel

Storage

compress-write on a different
thread

Page Cache
File System

write

Write
stall!!

Background eviction

DRAM

• Application threads stall frequently when host-level cache are full

Lack of Dynamic and Concurrent Processing Support

10

• Current approaches lack capability to dynamically decide where to process (in the host or the device)

Near-storage Device with Host FS

App

Kernel

Storage

Execute KNN at host
(large graph)

DRAM

Page Cache
File System

Not using device memory
and compute

High data
movement

Or offload KNN to device
(large graph)

Limited Device Resources

• Background
• Motivation
• Design
• Evaluation
• Conclusion

11

Outline

Our Solution: OmniCache

A horizontal caching design to exploit the combined capabilities of
near-storage, host compute, and their memory resources to accelerate

I/O and data processing

12

Host

Device

HostCache

DevCache

App

Storage

Host

Device

HostCache

DevCache

App

Storage

Vertical Caching Horizontal Caching

OmniCache Overview

• Horizontal caching design to exploit host and device memory

• Accelerates I/O and data processing with collaborative caching

• Dynamically offloads requests to host or device

• OmniCache exploits CXL for reducing host-device communication costs

13

OmniCache

Host

Device

HostCache

DevCache

App

Storage

OmniCache Components

14

UserLib

Device

HostCache

DevCache

Storage

NearStorageFS

OmniDynamic

OmniIndex

• UserLib
• Support POSIX API
• Provide predefined I/O and data processing functions

App

• OmniIndex
• Provides a unified cache view across host and device
• Delegates cache management to host
• Fine-grained concurrency control

• OmniDynamic
• Dynamically offloads requests between host and device

• NearStorageFS
• Handles I/O and data processing request
• Manages file data and metadata

Concurrent I/O and Processing Example

DevCache

UserLib

Device

[10, 12M)

[6, 8M)[0, 2M)

[4, 6M)

[12, 14M)

[8, 10M)

HostCache

Storage

OmniDynamic

NearStorageFS

Device CPU

Host CPU

…

OmniIndex
(per-file)

15

Thread1
pwrite()

Thread2
read-checksum-write()

Reduce Read/Write Amplification
• OmniCache reduces amplification by increasing data access on the nearest cache

UserLib

Device

Storage
NearStorageFS

4KB

DevCache

16

Thread1
pread(fd1, buf, 1KB, 0)

OmniIndex
1KB

Only 1KB data movement across devices

Low access latency within the device

Near-storage cache overcomes alignment-related amplification issues

Concurrent I/O and Data Processing Support
• Minimizes application stalls by collaboratively using HostCache and DevCache

UserLib

Device

Storage
NearStorageFS

App

HostCache

write

DevCache

Offload and write data to device
cache concurrently without stallingBackground eviction

17

checksum-write

Horizontal paradigm for caches can reduce frequent application stalls!

Collaborative Data Processing

UserLib

Device

HostCache

OmniDynamic

Execute at Device

Execute at Host

…
HostCache

DevCache DevCache
read-distance-nearestK()

read-distance-nearestK()

predict()

How to dynamically determine where to process?
18

• OmniCache collaboratively uses HostCache and DevCache for processing

Model-driven Dynamic Offloading

• Processing speed depends on factors such as data ratio, processor cache, queuing delay

• OmniCache continuously monitors host/device resources before offloading

• Model estimates processing time across host and device to identify a request's location

• Model = Data Transfer Cost + Queuing Latency + Execution Time

19
Please see paper for more details!

CXL Extensibility for OmniCache

CXL DeviceStorage Media

DevCache
NearStoreFS

App
FS Lib

CXL Device

Device memory
address space

CXL.mem

Load/Store
latency

(~170-250ns)

• CXL can enable host compute to directly access device memory!

• CXL.mem maps device memory to the host as a NUMA node

• Reduces I/O queuing delays, and CPU polling overheads for OmniCache

20

• Background
• Motivation
• Design
• Evaluation
• Conclusion

21

Outline

Experimental Setup
• Hardware platform

• Dual-socket 64-core Xeon Scalable CPU @ 2.6GHz
• 512GB Intel Optane DC NVM

• Emulated in-storage FS (no programmable storage H/W)
• Dedicate device threads for handling I/O requests
• Add PCIe latency for all I/O operations
• Reduce CPU frequency for device CPUs (and memory bandwidth)

• State-of-the-art designs
• NOVA [FAST’ 16] (Kernel-level FS)
• FusionFS and User-level host cache atop FusionFS [FAST ‘22] (Device-level FS)
• Emulated λ-IO without FPGA but with OS caching [FAST ‘23] (near-storage design)

22

Evaluation Goals

• Understand effectiveness of OmniCache for reducing I/O overheads

• Study and validate the benefits of OmniDynamic

• Understand the performance by using CXL.mem

• Discuss overall real-world application impact

23

Microbench

Random Read Random Write

24

• Each thread issues 1KB I/O requests, resulting in a total workload size of 64GB
• HostCache-user-level and lambda-IO-emulate employ 20GB host DRAM cache
• OmniCache uses 16GB HostCache and 4GB DevCache

OmniCache significantly reduces data movement and eviction stalls

0

1

2

3

4

1 4 16 32

T
hr

ou
gh

pu
t

(G
B/

s)

of threads

NOVA
FusionFS
HostCache-user-level
λ-IO-emulate
OmniCache

0

1

2

3

4

1 4 16 32

T
hr

ou
gh

pu
t

(G
B/

s)

of threads

Evaluation Goals

• Understand effectiveness of OmniCache for reducing I/O overheads

• Study and validate the benefits of OmniDynamic

• Understand the performance of using CXL.mem

• Discuss overall real-world application impact

25

Evaluate and validate OmniDynamic

I/O + Data Processing (Read-CRC-Write)

26

• Each thread randomly reads 4KB data blocks, calculates checksum, and writes it back
• OmniCache-dynamic uses 16GB HostCache and 4GB DevCache

Improves performance by considering hardware/software factors such as
queue delays, host and device load, near-data access

0

1

2

3

4

1 4 16 32

T
hr

ou
gh

pu
t

(G
B/

s)

of threads

FusionFS
HostCache-user-level
OmniCache-dynamic

Evaluation Goals

• Understand effectiveness of OmniCache for reducing I/O overheads

• Study and validate the benefits of OmniDynamic

• Understand the performance of using CXL.mem

• Discuss overall real-world application impact

27

Understand the performance with CXL

Random Write

28

• CXL emulation: we map device memory as a remote NUMA socket to the host CPUs, but local to
the device CPUs

OmniCache with CXL improves performance by avoiding I/O
queuing delays and CPU polling cost

0

1

2

3

4

1 4 16 32

T
hr

ou
gh

pu
t

(G
B/

s)

of threads

FusionFS
HostCache-user-level
OmniCache
OmniCache-CXL

Evaluation Goals

• Understand effectiveness of OmniCache for reducing I/O overheads

• Study and validate the benefits of OmniDynamic

• Understand the performance by using CXL.mem

• Discuss overall real-world application impact

29

Real-world Application

YCSB on LevelDB KNN

30

OmniCache also shows high throughput gains on real-world applications

0
50

100
150
200
250
300
350

A B C D E F

T
hr

ou
gh

pu
t

(k
op

/s
)

Workloads

FusionFS

HostCache-user-level

OmniCache

0

1

2

16 32

T
hr

ou
gh

pu
t

(G
B/

s)

of threads

FusionFS
HostCache-user-level
OmniCache

• Background
• Motivation
• Design
• Evaluation
• Conclusion

31

Outline

Conclusion
• It’s critical to use all compute and memory resources in the system
• Our approach: OmniCache, a horizontal and scalable caching design

• OmniCache effectively reduces data amplification by collaboratively
using host and device caches

• OmniCache accelerates I/O and data processing by concurrently
using host and device CPUs

• CXL provides substantial benefit with the unified caching design

32https://github.com/RutgersCSSystems/omnicache-fast24-artifacts

