
Scalability in the Clouds!
A Myth or Reality?

Sanidhya Kashyap Changwoo Min Taesoo Kim
School of Computer Science

Georgia Institute of Technology

Abstract
With increasing demand of big-data processing and faster
in-memory databases, cloud providers are gearing towards
large virtualized instances rather than horizontal scalability.

However, our experiments reveal that such instances in
popular cloud services (e.g., 32 vCPUs with 208 GB sup-
ported by Google Compute Engine) do not achieve the de-
sired scalability with increasing core count even with a sim-
ple, embarrassingly parallel job (e.g., kernel compile). On a
serious note, the internal synchronization scheme (e.g., par-
avirtualized ticket spinlock) of the virtualized instance on a
machine with higher core count (e.g., 80-core) dramatically
degrades its overall performance. Our finding is different
from a previously well-known scalability problem (lock con-
tention problem), and occurs because of the sophisticated
optimization techniques implemented in the hypervisor, what
we call—sleepy spinlock anomaly. To solve this problem, we
design and implement oticket, a variant of paravirtualized
ticket spinlock that effectively scales the virtualized instances
in both undersubscribed and oversubscribed environments.

1. Introduction
The cloud is often considered the abyss of horizontal scala-
bility. However, the advent of commodity and cost-effective
multicore machines allows cloud providers to aim at achiev-
ing not only horizontal but also vertical scalability. For exam-
ple, popular cloud providers now enable provisioning of large
virtual instances with higher vCPU count (up to 36 vCPUs)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
APSys’15, July 27-28, 2015, Tokyo, Japan.
Copyright c⃝ 2015 ACM ISBN 978-1-4503-3554-6/15/07. . . $15.00.
http://dx.doi.org/10.1145/2797022.2797037

0

20

40

60

80

100

120

140

4 8 12 16 20 24 28 32

bu
ild

s
/h

ou
r

#vCPUs

EC2–PVM
EC2–HVM

GCE
Azure

VM–16-core E5

Figure 1: Performance of a Linux kernel compile on high-end
VMs on Amazon EC2, Google Compute Engine, Microsoft Azure,
and our in-house machine with similar hardware configuration.
According to our experiment, cloud environments (except Azure)
with increasing vCPU count do not guarantee scalable performance
to end users.

and larger memory space (up to 488 GB) 1. Not surprisingly,
this trend will continue as increasing number of cores be-
come readily available on commodity CPUs (e.g., up to 1K
cores in SPARC M7 [3]) since there is a huge demand on
catering large in-memory databases and processing engines
(e.g., 240-core machine [5] for SAP HANA [6]).

Given these upcoming large machines, the main question
we would like to answer in this paper is the following: what
are the scalability characteristics of popular cloud providers?
Additionally, is the underlying virtualization technology scal-
able enough to support VMs with hundreds of vCPUs in the
future? We attempt to answer these question by performing
a Linux kernel compile, an embarrassingly parallel job that
end users might expect to scale vertically by delegating the
task to the cloud (e.g., elastically adjust the vCPU count on
demand). We then replicate the same environment on our
80-core machine to project its scalability characteristics.

Figure 1 shows our experiment’s results on the largest
instances provided by three cloud services—Amazon Web
Services (EC2), Google Compute Engine (GCE), and Mi-

1 Amazon Web Service (AWS) provides 36 vCPUs with 60 GB of memory,
Google Compute Engine (GCE) provides up to 32 vCPUs with 208 GB of
memory, and Microsoft Azure provides 32 vCPUs with 488 GB of memory.

Instances # Cores Sockets CPU Freq. Mem L3 Guest OS Kernel Virtualization Instance Cost / hour
(P / L) (GHz) (GB) (MB) type type ($)

AWS 16 / 16 1 2.8 60.0 25 Ubuntu 14.04 3.13 PVM / HVM c3.8xlarge 1.68
GCE 16 / 16 1 2.3 28.8 45 Ubuntu 15.04 3.19 PVM n1-highcpu-32 1.28
Azure 28 / 4 2 2.0 488.0 40 Ubuntu 15.04 3.19 HVM Standard G5 8.69

E5-2630 v3 16 / 16 2 2.4 64.0 20 Ubuntu 15.04 4.0.0 PVM / HVM - -

Table 1: Hardware and VM configurations of the Amazon EC2 (AWS), Google Compute Engine (GCE), Microsoft Azure (Azure), and our
in-house machine used in Figure 1 for comparison. The following experiments were performed on May 2, 2015.

0
20
40
60
80

100
120
140
160
180
200

20 40 60 80 100 120 140 160

bu
ild

s
/h

ou
r

#vCPUs

Native
PVM
HVM

oticket

Figure 2: Performance of a Linux kernel compile on an 80-core ma-
chine. We enabled hyperthreads per core, similar to the cloud envi-
ronments, and measured performance (builds/hour) on host (marked
Native), PVM, HVM, and our own implementation, oticket. Unlike
our speculation—hyperthreads being the only performance bottle-
neck as we observed from Figure 10– we found serious performance
degradation in the PVM-based hypervisor at higher core counts.

crosoft Azure (see Table 1). We can clearly observe that all
VMs provided by the cloud services are scalable to 16 vC-
PUs. However, there is degradation after 16 vCPUs in EC2
and GCE instances as the compilation plateaus. This happens
because both cloud providers use hyperthreads for provision-
ing VMs with 32 vCPUs. We confirm this by replicating the
same experiment in our lab with a 16-core E5-2630 v3 ma-
chine that has a similar hardware configuration as the VMs
provided by the cloud providers (Table 1). On the contrary,
Azure scales well beyond 16 vCPUs, showing ideal scala-
bility characteristics for 32 vCPUs VM with respect to bare
metal. Although there is no information available online, we
believe that Azure allocates more physical cores (28) than
logical ones (4) as the processor is a E5-2698B v3, which
consists of 14 physical cores.

On our 80-core machine, we use the highly optimized par-
avirtualized VM (PVM). Theoretically, the performance of
PVM should be the same or better than HVM even for large
number of cores. Unfortunately, this trend tends to break as
Figure 2 pinpoints the scalability bottleneck for the increas-
ing vCPU count from 20 to 30. This result is counter-intuitive
to what has been the case of paravirtualized instances and is
only visible when the number of vCPUs is greater than 20
physical cores. We classify this problem as the sleepy spin-
lock anomaly, which is only visible in VMs using paravirtual
spinlocks [1]. This problem does not stem from the cacheline
contention that has been observed in commodity OSes [9];
instead it arises from the introduction of ticket based spinlock

implementations that try to guarantee fairness. We address
this problem by introducing two optimizations to the existing
ticket spinlock. We improve the performance of PVMs for
both undersubscribed and oversubscribed virtualized work-
loads by modifying 15 LOC without breaking the fairness
guarantee.

In this paper, we make the following three contributions:
• We first reveal the scalability characteristics of three popu-

lar cloud services, and develop an open source benchmark
framework to evaluate various workloads by extending
the benchmark tool (Mosbench [9]) for the virtualized
environment.

• We identify a bottleneck called the sleepy spinlock
anomaly in the paravirtual spinlocks for VMs with high
vCPU count, which degrades the performance of both
undersubscribed and oversubscribed environment.

• We propose oticket, a variant of the paravirtualized
ticket spinlock that scales in both undersubscribed and
oversubscribed virtualized environment.
In the rest of the paper, we provide a high-level overview

of the paravirtual spinlock implementation (§2), and describe
our two optimizations in §3. §4 discusses the implementation
of the optimization for the ticket spinlock in the Linux kernel,
and §5 evaluates our optimization performance. §6 discusses
the limitation and potential issues. Lastly, §7 compares our
approach with previous research and §8 concludes.

2. Background
Spinlock is the basic building block for synchronization
primitives inside the Linux kernel. As core count increases,
scalability of spinlock becomes important; a recent study
shows that non-scalable spinlock can cause performance
collapse in an entire system [9, 10]. Therefore, to ensure
scalability and fairness [4, 10, 16], the key design choices are
to minimize shared cacheline contention as well as guarantee
the FIFO ordering to prevent starvation with increasing core
count. The Linux kernel uses ticket spinlock for fairness
guarantee and recently adopted queue-based spinlock for
better scalability [15]. A ticket spinlock is represented as
a tuple—[head, tail]. The current ticket holder holds the
head, while a lock waiter increments the tail and spins until
the head becomes equal to the tail. At lock release, head is
incremented for the next lock waiter to acquire the lock.

In virtualized environments, the introduction of vCPUs
complicates the scalability of spinlocks. Figure 3 illustrates

Run

vCPU1 vCPU2 vCPU3

t = 1 t = 2 t = 3

Run Run
Lock dep.

t = N Ticket order

vCPU1 vCPU2 vCPU3

t = 1 t = 2 t = 3

Run RunSleep
Lock-Holder
Preemption

vCPU1 vCPU2 vCPU3

t = 1 t = 2 t = 3

Run
Lock-Waiter
PreemptionRun Sleep

Figure 3: The issue of lock-holder preemption and lock-waiter
preemption problem. Each of the circles represent a vCPU scheduled
on a CPU. The Sleep state is the preempted vCPU whereas the Run
state is the running one. t is the ticket order in which the vCPUs are
waiting for the holder to release so that the waiters can acquire in
FIFO order.

two anomalies, namely—lock-holder preemption (LHP) and
lock-waiter preemption (LWP). LHP occurs when the vCPU
that is holding the lock gets preempted and none of the lock
waiters make progress. On the contrary, LWP happens due to
the FIFO-ordered spinlock algorithms (like ticket spinlock),
in which none of the waiters make progress unless the exact
next waiter is scheduled.

To address the aforementioned problems, Intel recently
added the Pause Loop Exiting (PLE) feature to its proces-
sors [20]. In PLE, a processor detects whether a task is run-
ning a spin loop, executes pause instructions, and traps a
guest OS to the hypervisor. However, methods to efficiently
choose a lock holder (when a lock is acquired) or the next lock
waiter (when a lock is released) remains an open problem.
The recently proposed paravirtual spinlock [13, 19] addresses
these problems without architectural support: a lock waiter
first spins for a lock for a fixed iteration (fast path), and if it
fails to acquire a lock, it voluntarily yields to other vCPUs
by issuing a halt instruction (slow path). When a lock is
released, the next waiter is woken up (kicking the next wait-
ing vCPU). Voluntary yielding reduces the LHP problem and
precisely waking the next vCPU reduces the LWP problem.

Surprisingly, our evaluation results in Figure 2 show
sudden performance collapse at higher number of cores. This
occurs due to the increase in halt exits after the 30th core
(Figure 4). This is different from both LHP and LWP, and
results from high contention among the vCPUs for shared
resources (e.g., critical section or memory bus). Therefore,
the duration between lock acquisition to release tends to be
longer, and at certain point (30 vCPUs in this case), most
vCPUs fail to acquire a lock during optimistic spinning and
trap to the hypervisor at the same time (as evident in Figure 4).
From this point, switching overhead between guest OS and
hypervisor, and communication cost to wake other vCPUs
start dominating resulting in performance collapse.

It is challenging to design and implement a spinlock
that performs well in virtualized environments especially

0

200

400

600

800

1000

1200

1400

20 40 60 80 100 120 140 160

#
h
a
l
t

ex
its

×
10

00

#vCPUs

PVM
oticket

Figure 4: Number of halt exits that occur during a Linux kernel
compile for two variants of spinlocks: in-stock ticket spinlock
(PVM) and our oticket implementation.

at higher core count. In the rest of this paper, we present our
opportunistic ticket spinlock (oticket) that opportunistically
changes the threshold of spin and opportunistically wakes up.

3. Design
We propose a new spinlock algorithm for virtualized en-

vironments, named opportunistic ticket spinlock (or oticket
for short). Our opportunistic ticket spinlock not only resolves
the performance anomaly as shown in Figure 2, but also ad-
dresses the LHP and LWP problems, which are critical in
achieving scalability in virtualized environments.

Like the stock paravirtual ticket spinlock in the Linux ker-
nel, oticket is composed of a fast path and a slow path: each
vCPU spins first and then voluntarily yields to other vCPUs
if it is unable to acquire the lock. In addition, to resolve LHP
and LWP, we introduce two schemes, opportunistic spinning
and opportunistic wake-up. To make the optimal decision on
spinning and waking-up, we exploit the distance between the
lock holder and the lock waiter. Since ticket spinlock guaran-
tees strict FIFO ordering of waiters, we assume that the time
to acquire a lock is roughly proportional to the waiter’s dis-
tance. With the help of both schemes, oticket mitigates the
problem of sleepy spinlock anomaly by keeping the waiters
in the fast path thereby decreasing the number of halt exits
(Figure 4).
Opportunistic spinning. Determining the spinning duration
of the fast path is challenging since it is dependent on the
workload and hardware combination. Longer spins unnec-
essarily hog the CPU cycles, but shorter durations result in
performance collapse as shown in Figure 2.

In oticket, the spin duration is dynamically determined
by the distance between the lock waiter and its holder. Closer
waiters opportunistically spin for a longer duration, hoping to
acquire the lock sooner. If a lock is acquired while spinning,
the vCPU can avoid the problems of costly switching between
the guest OS and hypervisor. Conversely, farther waiters
spin shorter and yield early to give more chance for a
lock holder to make progress. Consequently, this results in
LHP problem mitigation. In oticket, as the distance of a
lock waiter increases, the spinning iteration exponentially
decreases (Lines 27–30 in Figure 5).

1 #define SPIN_THRESHOLD (1 << 15)
2 #define SPIN_MAX_THRESHOLD (1UL << 34)
3 #define TICKET_QUEUE_WAIT (18)
4 #define OPPORTUNISTIC_WAKEUP_NCPU (4)
5

6 + static __always_inline
7 + unsigned int __ticket_distance(__ticket_t head, __ticket_t tail)
8 + {
9 + return (tail - (head & ~TICKET_SLOWPATH_FLAG)) \

10 + / TICKET_LOCK_INC;
11 + }
12

13 static __always_inline
14 void arch_spin_lock(arch_spinlock_t *lock)
15 {
16 register struct __raw_tickets inc = {.tail = TICKET_LOCK_INC};
17 + unsigned int dist;
18

19 /* default threshold set in Linux */
20 u64 threshold = SPIN_THRESHOLD
21

22 /* try locking */
23 inc = xadd(&lock->tickets, inc);
24 if (likely(inc.head == inc.tail))
25 goto out;
26

27 + /* opportunistically determines spinning threshold */
28 + dist = __ticket_distance(inc.head, inc.tail);
29 + if (dist < TICKET_QUEUE_WAIT)
30 + threshold = SPIN_MAX_THRESHOLD >> (dist - 1);
31

32 for (;;) {
33 /* spinning (fast path) */
34 u64 count = threshold;
35 do {
36 inc.head = READ_ONCE(lock->tickets.head);
37 if (__tickets_equal(inc.head, inc.tail))
38 goto clear_slowpath;
39 cpu_relax();
40 } while (--count);
41

42 /* yield (slow path) */
43 __ticket_lock_spinning(lock, inc.tail);
44 }
45

46 clear_slowpath:
47 __ticket_check_and_clear_slowpath(lock, inc.head);
48 out:
49 barrier();
50 }
51

52 static __always_inline
53 void arch_spin_unlock(arch_spinlock_t *lock)
54 {
55 if (TICKET_SLOWPATH_FLAG &&
56 static_key_false(¶virt_ticketlocks_enabled)) {
57 __ticket_t head;
58

59 head = xadd(&lock->tickets.head, TICKET_LOCK_INC);
60

61 if (unlikely(head & TICKET_SLOWPATH_FLAG)) {
62 u8 count;
63 head &= ~TICKET_SLOWPATH_FLAG;
64

65 + /* opportunistic wakeup */
66 + for (count = 1; count <= OPPORTUNISTIC_WAKEUP_NCPU;
67 + ++count)
68 + __ticket_unlock_kick(lock,
69 + (head + count * TICKET_LOCK_INC));
70 }
71 } else
72 __add(&lock->tickets.head,
73 TICKET_LOCK_INC, UNLOCK_LOCK_PREFIX);
74 }

Figure 5: Our opportunistic ticket spinlock code implemented in
the Linux kernel 4.0 [1]. It opportunistically increases the spinning
threshold from the static threshold in the stock Linux, and oppor-
tunistically wakes up more CPUs near their ticketing turn.

Opportunistic wake-up. Waking up a halt-ed vCPU takes
a long time because after an unlocked vCPU is trapped to
the hypervisor, the hypervisor schedules the target vCPU. To
hide this wake-up latency, oticket implementation allows the
unlocking vCPU to wake the next N lock waiters in advance
(Lines 65–68 in Figure 5). Naturally, in conjunction with
the opportunistic spinning scheme, this mitigates the LWP
problem.
4. Implementation
We implemented our opportunistic ticket spinlock in Linux
kernel 4.0 by replacing the paravirtual ticket spinlock in KVM
with oticket. Our paravirtual spinlock is practical because
of its minimal modification (lines starting with + in Figure 5)
and without any changes to the size of its lock structure. In our
locking function, arch_spin_lock(), __ticket_distance()
calculates distance between a lock holder and waiter (Lines
6–11) before spinning, and __ticket_lock _spinning()
makes its running vCPU yield to other vCPUs by execut-
ing a halt instruction (Line 43). In our unlock function,
arch_spin_unlock(), oticket opportunistically wakes up
vCPUs (Lines 65–69). The waking-up function, __ticket_un-
lock_kick(), is implemented using a hypercall. Besides this,
we do not modify any other kernel functions for the oticket
implementation.
5. Evaluation
We evaluate oticket by answering the following three ques-
tions:
• What is the impact of the two proposed techniques for the

scalability of PVM? (§5.1)
• Does any other spinlock implementation solve the scala-

bility issue? (§5.2)
• Does the opportunistic wake-up mechanism boost the

performance of VMs in an oversubscribed environ-
ment? (§5.3)

Experimental setup. We created VBench2, a fork of Mos-
bench [9], to evaluate the scalability of the host and hyper-
visor while running multiple virtual machines. Among the
workloads in VBench, we chose the Linux kernel compile
for evaluation since it is embarrassingly parallel and easily
scales in high degree of parallelism without virtualization.
To isolate the effect of I/O, we run the benchmark on top of
the memory-based file system, tmpfs, while pre-loading all
of the input source files before measuring the performance.
We also set the number of parallel jobs of kernel compile to
twice the number of cores, both for VM and Host. For the
optimal performance of VMs, we pin each vCPU to a core.

5.1 Performance Analysis
Figure 2 shows that the stock ticket spinlock (PVM) starts
suffering after 30 vCPUs and its performance completely
collapses at 40 vCPUs. In contrast, oticket achieves consis-
tent performance improvement until 80 vCPUs (all physical

2 https://github.com/sslab-gatech/vbench

https://github.com/sslab-gatech/vbench

0
20
40
60
80

100
120
140
160

20 40 60 80 100 120 140 160

bu
ild

s
/h

ou
r

#vCPUs

oticket

Opportunistic spinning
Opportunistic wake-up

Figure 6: Performance impact of each optimization for the Linux
kernel compile using modified paravirtualized spinlock interface.
oticket is the implementation shown in Figure 5. Opportunistic
wake-up and spinning are the individual ticket spinlock implementa-
tions that constitute oticket.

CPUs assigned) and does not show equivalent performance
collapse in PVM until 160 vCPUs. Figure 4 illustrates the
difference between oticket and PVM as the number of halt
exits of the PVM starts soaring after 30 vCPUs, but remains
almost constant for oticket. It reveals that voluntary sleep-
ing optimization for virtualized environments can result in
performance collapse (sleepy spinlock anomaly) and oticket
effectively avoids this.

Figure 6 shows the effectiveness of each scheme. oticket
provides the best of both worlds—opportunistic spinning and
opportunistic wake-up, by performing slightly better than
both and the best at 80 vCPUs (consisting of only physical
cores). The opportunistic spinning approach prohibits the
nearest waiters from going to sleep, thereby immediately
acquiring the lock. Both approaches start degrading after 110
cores because of the large number of waiters that are going
to sleep from the use of both logical cores and increasing
contention among vCPUs.

5.2 Comparison with Design Alternatives
We explore three design alternatives – (1) longer spinning,
(2) fine-grained control of the spinning period (iticket),
and (3) queue-based spinlock for further reducing cacheline
contention (qspinlock) – and compare their performance to
oticket and the stock ticket spinlock (PVM).

To spin longer, we modify the default spinning threshold of
the stock ticket spinlock to the maximum (SPIN_MAX_THRESHOLD
in Figure 5).

We further modify the existing ticket spinlock structure
by introducing a new variable for holding the threshold value
for each lock structure. The default spinning threshold value
(SPIN_THRESHOLD in Figure 5) is increased twice whenever
a contended thread of the same lock instance ends up in
the slow path. This allows more fine-grained control of the
spinning duration per spinlock. We call this ticket spinlock
implementation iticket.

Practitioners are inclining towards using variants of MCS
lock [4] or its variant - queue spinlock [15] as they per-
form better on large NUMA machines due to less cacheline
contention. There is an implementation of fast queue spin-

0
20
40
60
80

100
120
140
160

20 40 60 80 100 120 140 160

bu
ild

s
/h

ou
r

#vCPUs

PVM
oticket

Longer spinning
iticket

qspinlock

Figure 7: Linux kernel build performance for various FIFO based
paravirtual spinlock implementations: Opportunistic ticket spinlock
(oticket), ticket spinlock with longer spinning (Longer spinning),
fine grained control of spinning period (iticket), and a MCS variant
queue spinlock (qspinlock).

lock [15] (called qspinlock) with structure size the same as
that of the ticket spinlock structure (4 bytes).

Figure 7 illustrates that the longer spin approach performs
slightly better than oticket as the number of cores increases
from 130 cores. This happens because all waiters are spend-
ing more time spinning than going to the slow path condition.
But, as expected, this pays the price in an oversubscribed
environment (Figure 8).

The iticket spinlock implementation performs similar to
oticket, but adds a significant overhead of 2 bytes at every
place it is being used. In practice, increasing the size of a
spinlock data structure has serious repercussions to tightly
packed container data structures such as page structures and
all.

Figure 7 shows the performance of three alternatives
against the existing spinlock implementation (PVM). We
can observe that qspinlock also suffers from sleepy spinlock
anomaly as there is no improvement in the virtualized en-
vironment. This proves that the anomaly can occur for any
spinlock algorithm relying on slow path in the virtualized
environment.

5.3 Performance in an Over-Committed Host
Another interesting aspect of the spinlock design for virtu-
alized environments is the performance behavior in an over-
committed setting (i.e., running more vCPUs than physical
cores). Although the highly over-committed case will be
avoided using virtual machine migration, it is desirable to
have good performance in the over-committed case to cope
with the overlapping peaks among VMs.

Figure 8 shows the compilation time of the Linux kernel
inside a VM that has been co-scheduled with another VM.
Both VMs are compiling the Linux kernel simultaneously.

We observed that oticket outperforms the existing ticket
spinlock and its longer spinning alternative. This proves
that although longer spinning is advantageous for under-
committed environments, it drastically degrades the perfor-
mance in the over-committed setting. Longer spinning is
helpful until 40 cores, but starts degrading due to increase in
cache contention and number of waiters. PVM suffers from

0
5

10
15
20
25
30
35
40
45

20 40 60 80 100 120 140 160

bu
ild

s
/h

ou
r

#vCPUs

PVM
oticket

Longer spinning

Figure 8: Performance impact of spinlock variants on Linux kernel
compile for a single VM when co-scheduled with another exact VM
instance running the same compilation.
the sleepy spinlock anomaly as well as contention with other
vCPUs since another VM is performing the same job. This
inherently comes from the strict FIFO ordering and inconsis-
tencies in the vCPU scheduling. On the other hand, oticket
suffers from the same problem, but performs better than these
two techniques. Our opportunistic wake-up scheme partially
hides the latency of other waiters by waking them up before-
hand. This also allows the vCPU to schedule other tasks, thus
allowing the VM to progress further.
6. Discussion and Limitations
Paravirtualized interfaces are the second most efficient in-
terfaces (after hardware assistance) for providing better per-
formance in virtualized environments. They provide more
control to the guest execution by enabling the coordination
between the guest OS and hypervisor. However, we observe
an anomaly existing for VMs with high core count. We be-
lieve that more coordination is necessary between the guest
and hypervisor to improve scalability. Two possible solutions
are tight integration of PLE with oticket and co-scheduling
vCPUs at the time of yielding. This can further improve the
performance and decrease the performance gap between bare
metal and virtualized instance. This approach might solve the
problem of performance drop for over-subscribed machines
with high core count.
7. Related work
VM scheduling and synchronization has a serious impact on
the performance of a VM. There have been prior significant
efforts to improve the performance of VM scheduling.
Spinlocks for virtualized environment. Uhlig et al. [24]
defined and addressed the lock synchronization issue (LHP)
in the virtualized environment via scheduling hints. Later,
paravirtual hooks were used in the spinlock [13] for notifying
the hypervisor to block the vCPU after it has exhausted its
busy wait threshold. This approach, however, prevents LHP
for smaller core counts. Besides LHP, two different problems
have been identified: lock-waiter preemption (LWP) [18]
and Blocked Waiter Problem (BWW) [12, 21]. BWW occurs
when the workload is using blocking synchronization in an
over-subscribed environment.

From the hardware perspective, processor manufacturers
added an execution control to the VMCS structure—Pause

Loop Exiting (PLE) [20]– that notifies the hypervisor of the
waiter via VM exit. PLE partially solves the LHP problem
but can also result in false positives. Ahn et al. [8] proposed
a solution on the basis of a smaller time slice to resolve both
interrupt handling and LHP-LWP problems. They proposed
an LLC based architectural solution to resolve the large
overhead. This approach will result in a huge overhead for
VMs with a high core count, and degradation might remain
consistent.

There have been other alternatives of spinlock implemen-
tations such as MCS locks [4, 11, 15] that are considered a
better alternative to ticket spinlock implementation. Unfortu-
nately, the issue of sleepy spinlock anomaly stems in spinlock
implementations following strict FIFO ordering. Therefore,
this problem will continue to be seen in the queue–based
spinlock for virtualized environments.
Virtualization overhead and Scheduling. There have been
several studies on the virtualization overhead due to software-
hardware redirection [7, 21] and co-scheduling issues [12, 13,
17, 18]. In the vCPU scheduling space, hypervisors, such as
VMware, adopted the co-scheduling of multiple vCPUs [2] to
deal with guest and VMM synchronization. This was further
improved by using an adaptive scheme for scheduling the
vCPUs [8, 14, 24, 25]. Later, Orathai et al. [23] came up with
the approach of dedicating the vCPU with a physical CPU
rather than co-scheduling. Furthermore, Song et al. [22] used
the approach of vCPU ballooning on top of physical CPUs,
which avoided the problem of double scheduling.
8. Conclusion
In this paper, we analyze the scalability performance of a
VM on an 80-core machine for the Linux kernel compilation
benchmark. Our preliminary study suggests that in addition
to cache-contention bottleneck, the usage of spinlock, which
guarantees strict FIFO ordering, is another culprit for per-
formance degradation. We identify this issue for VMs with
large vCPU count and provide a variant of the ticket spinlock
implementation to address this problem. The VBench source
code is publicly available at https://github.com/sslab-
gatech/vbench and is easily extensible to identify more
issues with respect to the virtualization for large multicore
machines.

In future, we would like to devise a formally verified
generic oticket which is not susceptible to increasing
core count and can perform equivalent to HVM in an over-
subscribed environment. We will further extend our insight
to other synchronization primitives with respect to virtualiza-
tion.

9. Acknowledgment
We thank the anonymous reviewers, and our shepherd, Ketan
Maheshwari, for their feedback. This work was supported
by Institute for Information & Communications Technology
Promotion (IITP) grant funded by the Korean government
(MSIP) under contract ETRI MSIP/IITP[B0101-15-0644].

https://github.com/sslab-gatech/vbench
https://github.com/sslab-gatech/vbench

References
[1] Paravirtualized Spinlocks, 2008. http://lwn.net/
Articles/289039/.

[2] The CPU Scheduler in VMware ESX 4.1. 2010.

[3] M7: Next Generation SPARC. 2014.

[4] MCS locks and qspinlocks, 2014. https://lwn.net/
Articles/590243/.

[5] HP to Transform Server Market with Single Platform for
Mission-critical Computing, 2015. http://www8.hp.com/
us/en/hp-news/press-release.html?id=1147777.

[6] SAP HANA, 2015. http://hana.sap.com/abouthana.
html.

[7] K. Adams and O. Agesen. A Comparison of Software and
Hardware Techniques for x86 Virtualization. In Proceedings of
the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS,
2006.

[8] J. Ahn, C. H. Park, and J. Huh. Micro-Sliced Virtual Processors
to Hide the Effect of Discontinuous CPU Availability for
Consolidated Systems. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO, 2014.

[9] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An Analysis of Linux
Scalability to Many Cores. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation,
OSDI, 2010.

[10] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zel-
dovich. Non-scalable locks are dangerous. In Ottawa Linux
Symposium, OLS, 2012.

[11] D. Bueso. Scalability Techniques for Practical Synchronization
Primitives, 2014. https://queue.acm.org/detail.cfm?
id=2698990.

[12] X. Ding, P. B. Gibbons, M. A. Kozuch, and J. Shan. Gleaner:
Mitigating the Blocked-waiter Wakeup Problem for Virtual-
ized Multicore Applications. In Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Confer-
ence, USENIX ATC, 2014.

[13] T. Friebel. How to Deal with Lock-Holder Preemption. 2008.

[14] H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng. Demand-
based Coordinated Scheduling for SMP VMs. In Proceedings

of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS, 2013.

[15] W. Long. qspinlock: a 4-byte queue spinlock with PV support,
2015. https://lkml.org/lkml/2015/4/24/631.

[16] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, R. Russell,
D. Sarma, and M. Soni. Read-Copy Update. In Ottawa Linux
Symposium, OLS, 2002.

[17] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and
W. Zwaenepoel. Diagnosing Performance Overheads in the
Xen Virtual Machine Environment. In Proceedings of the 1st
ACM/USENIX International Conference on Virtual Execution
Environments, VEE, 2005.

[18] J. Ouyang and J. R. Lange. Preemptable Ticket Spinlocks:
Improving Consolidated Performance in the Cloud. In Pro-
ceedings of the 9th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, VEE, 2013.

[19] K. Raghavendra, S. Vaddagiri, N. Dadhania, and
J. Fitzhardinge. Paravirtualization for Scalable Kernel-
Based Virtual Machine (KVM). In Cloud Computing in
Emerging Markets (CCEM), 2012.

[20] M. Righini. Enabling Intel Virtualization Technology Features
and Benefits, 2010.

[21] X. Song, H. Chen, and B. Zang. Characterizing the Perfor-
mance and Scalability of Many-core Applications on Virtual-
ized Platforms. In Fudan University - Technical Report, 2010.

[22] X. Song, J. Shi, H. Chen, and B. Zang. Schedule Processes,
Not VCPUs. In Proceedings of the 4th Asia-Pacific Workshop
on Systems, APSys, 2013.

[23] O. Sukwong and H. S. Kim. Is Co-scheduling Too Expensive
for SMP VMs? In Proceedings of the ACM EuroSys Confer-
ence, Salzburg, Austria, Apr. 2011.

[24] V. Uhlig, J. LeVasseur, E. Skoglund, and U. Dannowski. To-
wards Scalable Multiprocessor Virtual Machines. In Proceed-
ings of the 3rd Conference on Virtual Machine Research And
Technology Symposium - Volume 3, VM, 2004.

[25] C. Weng, Q. Liu, L. Yu, and M. Li. Dynamic Adaptive
Scheduling for Virtual Machines. In Proceedings of the 20th
International Symposium on High Performance Distributed
Computing, HPDC, 2011.

http://lwn.net/Articles/289039/
http://lwn.net/Articles/289039/
https://lwn.net/Articles/590243/
https://lwn.net/Articles/590243/
http://www8.hp.com/us/en/hp-news/press-release.html?id=1147777
http://www8.hp.com/us/en/hp-news/press-release.html?id=1147777
http://hana.sap.com/abouthana.html
http://hana.sap.com/abouthana.html
https://queue.acm.org/detail.cfm?id=2698990
https://queue.acm.org/detail.cfm?id=2698990
https://lkml.org/lkml/2015/4/24/631

	Introduction
	Background
	Design
	Implementation
	Evaluation
	Performance Analysis
	Comparison with Design Alternatives
	Performance in an Over-Committed Host

	Discussion and Limitations
	Related work
	Conclusion
	Acknowledgment

