
POSEIDON: A Safe and Scalable 
Persistent Memory Allocator

Anthony Demeri, Wookhee Kim, 
R. Madhava Krishnan, Mohammed Ismail, 
Changwoo Min

1



We are on the cusp of a new era for 
memory hierarchies.

Persistent memory has arrived!

Non-volatile Main Memory (NVM)
was first commercialized by Intel as 
OPTANE DC Persistent Memory

It offers significant hierarchy benefits.

2

Finally, NVM is here.



Non-Volatile Main Memory 

3

NVM = DRAM + Disk?

Benefits of NVMM
● Read/write latency on order of DRAM
● Byte-addressable like the DRAM

○ Allows programmers to use common 
load/store instructions

● 100x faster than traditional disks
● Non-volatile like the storage

○ Retains data across failures 



Direct Memory Mapping

4

How does a developer access NVMM?

Persistent Memory

NVM is accessed using DAX 
mode.

Entire NVM region is mapped 
to the user region.

But, who will now manage the 
large mmaped region?

A NVM allocator is needed.

Kernel 
Space

User Application

Direct Access 
Memory Mapping 
(DAX Filesystem) 

Load/Store



5

Design Requirements-- NVM Allocators vs DRAM Allocators

Similarities 
● Scalable to many-cores 
● High -performance 

Special Considerations
● Ensure crash consistency for the allocation/deallocation
● Crash consistent metadata for correct recovery
● Handle persistent memory leaks 
● Safe  (heap metadata protection)



6

Unfortunately, existing persistent memory 
allocators fall far short

● Scalable only for small size memory allocations [Makalu-oopsla 16]

● Scales poorly for large size and number of allocations [Makalu-oopsla16]

● No metadata safety [Makalu-oopsla16, PMDK]

● Non-scalable across NUMA domain [Makalu-oopsla16, PMDK]



7

Persistent Memory   
Corruption in PMDK

1) Allocate all memory from the heap

2) Corrupt the header by “accidentally” 
writing prior to the returned pointer to feign 
a larger size

3) Erroneously free the larger size

4) Attempt to allocate again

5) PMDK over allocate already allocated 
memory



8

Summary of Problem
• Using NVMM requires more than a file system interface, in order to capitalize 

upon low latency benefits

• Interfacing with NVMM directly is non-trivial; mandating the need for  a 
persistent memory allocator

• A persistent allocator must provide: 

(1) scalable performance to manycores

(2) protection of heap metadata



• Architectural overview

• Fundamentals overview

• Design decisions: compare and contrast

• Evaluations

• Conclusion

9

Poseidon Presentation Outline



10

POSEIDON 
Architecture

Key Points

(1) Metadata is stored 
separately from user data

(2) Metadata exists on a
per-cpu echelon (non-global)

(3) Metadata is entirely
protected from write access



• Architectural overview

• Design decisions: compare and contrast

• Evaluations

• Conclusion

11

Poseidon Presentation Outline



Intel Memory Protection Keys (MPK)

12

How can we protect metadata?

Binning metadata storage is critical

Metadata

Userdata

Procedure

Initialization (one time cost)
int mpk_key = initialize_mpk_key(); // Get key
mpk_set_permissions(mpk_key, PROT_NONE); // Prot
mpk_map(addr, sizeof(meta), mpk_key); // Map meta

Completion
mpk_set_permissions(mpk_key, PROT_NONE);

Updating
mpk_set_permissions(mpk_key, PROT_RDWR);



Sub-heap, per-cpu design

13

How can we allow manycore scalability?

● Existing allocators have been shown to 
introduce problematic bottlenecks via 
global lists

● We adopt per-CPU metadata 
structures

○ Minimizes inter-socket memory 
accesses

○ Maximizes use of memory 
controllers

○ Eliminate global system 
bottlenecks

PMDK Heap

Thread 
1

Thread 
2

Thread 
3

Thread 
4

POS HEAP POS Heap



• How poseidon handles API misuse?

• How Poseidon handles defragmentation?

• Compare and contrast Poseidon with the other memory allocators at 

the design level 

• Implementation details 

14

More on paper..



• Architectural overview

• Fundamentals overview

• Design decisions: compare and contrast

• Evaluations

• Conclusion

15

Poseidon Presentation Outline



● Discuss the metadata safety guarantee of
POSEIDON (refer paper)

● Evaluate the scalability of POSEIDON, relative 
to the other persistent memory allocators 
(PMDK and Makalu)

● Evaluate the performance of real-world
applications with POSEIDON to demonstrate
POSEIDON’s impact

16

How can we evaluate POSEIDON? 



• Microbenchmarks
• Raw allocator performance

• HPC benchmarks
• Impact of memory location

• Real world benchmarks (refer paper)
• YCSB (key-value store)
• Larson (server simulation)

17

Benchmarks Overview-- For Scalability Evaluation



• Intel Xeon Platinum 8280M CPU (2.70 GHz)

• 768GB DRAM

• 3TB (12 x 256GB) Intel Optane DC Persistent Memory

• 2 Sockets

• 56 cores (112 logical cores)

18

System Setup



• Allocate 100 blocks, free 100 blocks in random order, repeat x1,000,000
• Not all memory allocators maintain free lists at the per-CPU level
• Makalu, for example, maintains a global list for allocations > 400 bytes

19

Microbenchmarks



20

HPC Benchmarks
Makalu is not scalable for 
allocations > 400 bytes, due to 
its global free list

The interconnect 
bottleneck of PMDK 
causes complete 
saturation of scalability

The per-CPU design and size-agnostic allocation 
design allows POSEIDON to scale linearly



• Real-World Server Benchmark -- Larson Benchmark

• Integration and Evaluation with Index Structures -- YCSB Benchmark

• Proofs on how Poseidon achieves its safety guarantees

21

More Evaluations in the paper..



• We presented Poseidon- A safe and scalable persistent memory allocator 

• Poseidon guarantees safety using Intel MPK

• Poseidon's’ per-cpu sub-heap design enables to scale almost linearly 

•  Consistently outperform its competitors while providing safety guarantees

22

Conclusion

Thank You



Multi-level Hash Table

How can we prevent API misuse?

● API misuse can cause persistent 
metadata corruption

● If a memory allocator allows 
erroneous-frees or double-frees to 
corrupt allocator metadata, we have 
either persistent memory leaks or 
overallocation

● We must have a high performing, 
scalable means of verifying existing 
allocations

23

 Flowchart

23

Hash 
Table 1

User Frees Address “a”

“a” 
exist?

Y

N

free(a)
Hash2(a)

Sub
Table

(1)

Sub
Table

(2)

Sub
Table

(n)

Hash1(a)

“a” 
exist? Y

N

reject(a)


