POSEIDON: A Safe and Scalable
Persistent Memory Allocator /7l

VIRGINIA TECH.

\a

[_ VIRGINIA TECH

Finally, NVM is here.

We are on the cusp of a new era for
memory hierarchies.

Persistent memory has arrived!

Non-volatile Main Memory (NVM)
was first commercialized by Intel as
OPTANE DC Persistent Memory

It offers significant hierarchy benefits.

\a

[_ VIRGINIA TECH

NVM = DRAM + Disk?

@ OPTANE DCO» Benefits of NYMM
PERSISTENT MEMORY e Read/write latency on order of DRAM
e Byte-addressable like the DRAM
u ' o Allows programmers to use common
load/store instructions

e 100x faster than traditional disks
e Non-volatile like the storage
o Retains data across failures

LR I T T LT

Non-Volatile Main Memory

\a

VIRGINIA TECH

How does a developer access NVMM?
Direct Memory Mapping

User Application NVM is accessed using DAX

mode.
teadipon T Entire NVM region is mapped
Kernel Direct Access to the user region.
Space Memory Mapping But, who will now manage the
(DAX Filesystem) large mmaped region?

A NVM allocator is needed.

Persistent Memory

\a

VIRGINIA TECH

Design Requirements-- NVM Allocators vs DRAM Allocators

Similarities
® Scalable to many-cores
e High -performance

Special Considerations
e Ensure crash consistency for the allocation/deallocation
® Crash consistent metadata for correct recovery
e Handle persistent memory leaks
e Safe (heap metadata protection)

\a

VIRGINIA TECH

Unfortunately, existing persistent memory
allocators fall far short

Scalable only for small size memory allocations [Makalu-oopsla 16]
Scales poorly for large size and number of allocations [Makalu-oopslal6]
No metadata safety [Makalu-oopslal6, PMDK]

Non-scalable across NUMA domain [Makalu-oopslal6, PMDK]

-
Persistent Memory
Corruption in PMDK

1) Allocate all memory from the heap

2) Corrupt the header by “accidentally”
writing prior to the returned pointer to feign
a larger size

3) Erroneously free the larger size
4) Attempt to allocate again

5) PMDK over allocate already allocated
memory

\a

VIRGINIA TECH

void pmdk_overlapping_allocation(nvm_heap *heap) {

void *p[1024], *free;
ant: 4.5

/* Make the NVM heap full of 64-byte objects */
for (i = 0; true; i = ++i ¥ 1024) {
if (!'(p[i] = nvm_malloc(64)))
break;

}

/* Free an arbitrary object but before freeing
* the object, corrupt the size in its allocation
* header to larger number. It will make the PMDK
* allocator corrupt its allocation bitmap. */
free = pli/2];
*(uint64_t *) (free - 16) = 1088; /* Corrupt header!!! x/
nvm_free(free);

/* Since only one object is freed, the NVM heap
should be able to allocate only one 64-byte object.
But due to the allocation bitmap corruption
in the previous step, 9 objects will be allocated.
Unfortunately, 8 out of 9 will be already allocated
* objects so it will cause user data corruption. */
for @G =10: true; i. = ++i % 1024) {

if ('(pl[i] = nvm_malloc(64)))

break;
assert(pli] == free); /* This will fail!!! */

* % % %

\a

VIRGINIA TECH

-
Summary of Problem

* Using NVMM requires more than a file system interface, in order to capitalize
upon low latency benefits

e Interfacing with NVMM directly is non-trivial; mandating the need for a
persistent memory allocator

e A persistent allocator must provide:
(1) scalable performance to manycores

(2) protection of heap metadata

\a

VIRGINIA TECH

Poseidon Presentation Outline

* Architectural overview
 Fundamentals overview

e Design decisions: compare and contrast
* Evaluations

e Conclusion

POSEIDON
Architecture

Key Points

1
2

3

Metadata is stored
separately from user data

\a

VIRGINIA TECH

metadata

NVMM metadata i NVMM user data
Superblock Per-CPU i Per-CPU
sub-heap 2 !\/Iembloc?k i sub-heap 2
information i user data

Lock
Undo log Lock
Sub-heap Undo log

info :
Micro log

Buddy list

Memblock B
hash table

offset

size
status

prev_mblk
| D

Memblock & next_mblk

arra
y next_free K
“_ s i y
Ry g Y
MPK-protected region i Read-writable
(read-only or read-writable permission) : region ‘

10

\a

[_ VIRGINIA TECH

Poseidon Presentation Outline

 Architectural overview

e Design decisions: compare and contrast

e Evaluations

e Conclusion

11

\a

VIRGINIA TECH

Safe

How can we protect metadata?
Intel Memory Protection Keys (MPK)

Binning metadata storage is critical

Metadata

Userdata

Procedure

Initialization (one time cost)

int mpk key = initialize mpk key(); // Get key
mpk set permissions (mpk key, PROT NONE); // Prot
mpk map (addr, sizeof (meta), mpk key); // Map meta

Updating
mpk set permissions (mpk key, PROT RDWR) ;

Completion
mpk set permissions (mpk key, PROT NONE) ;

12

\a

VIRGINIA TECH

... 5 ocalable
How can we allow manycore scalability:
Sub-heap, per-cpu design
e Existing allocators have been shown to
introduce problematic bottlenecks via | SOlClket 1 . | SOleetZ :
global lists " Thread | Thread | |C | Thread { Thread
1 5 2) 3 4)
e We adopt per-CPU metadata W j vy o ‘] ?
structures . o 1z
0 Minimizes inter-socket memory MC MC MC _MC
accesses s e e
o Maximizes use of memory POS EM POS Heap
controllers 112 4 || DRAM DIMM{ 1|2 |3 |4 || DRAM
o Eliminate global system PMDK Heap

bottlenecks

13

-

\a

VIRGINIA TECH

More on paper..

How poseidon handles APl misuse?

How Poseidon handles defragmentation?

Compare and contrast Poseidon with the other memory allocators at
the design level

Implementation details

14

\a

VIRGINIA TECH

Poseidon Presentation Outline

e Architectural overview
 Fundamentals overview

e Design decisions: compare and contrast
* Evaluations

e Conclusion

15

\a

VIRGINIA TECH

How can we evaluate POSEIDON?

Discuss the metadata safety guarantee of
POSEIDON (refer paper)

Evaluate the scalability of POSEIDON, relative
to the other persistent memory allocators
(PMDK and Makalu)

Evaluate the performance of real-world
applications with POSEIDON to demonstrate
POSEIDON’s impact

16

\a

I'_ VIRGINIA TECH

Benchmarks Overview-- For Scalability Evaluation

* Microbenchmarks
* Raw allocator performance

* HPC benchmarks
* Impact of memory location

e Real world benchmarks (refer paper)
* YCSB (key-value store)
* Larson (server simulation)

17

\a

VIRGINIA TECH

System Setup

* Intel Xeon Platinum 8280M CPU (2.70 GHz)

e 768GB DRAM

e 3TB (12 x 256GB) Intel Optane DC Persistent Memory
* 2 Sockets

* 56 cores (112 logical cores)

18

\a

VIRGINIA TECH

) Scalable
Microbenchmarks Performance

e Allocate 100 blocks, free 100 blocks in random order, repeat x1,000,000
* Not all memory allocators maintain free lists at the per-CPU level
* Makalu, for example, maintains a global list for allocations > 400 bytes

256 Byte Allocations . 1Kb Allocations 2 4Kb Allocations
Makalu = Makalu = Makalu =
Poseidon Poseidon Poseidon
B PMDK —-=- = PMDK —=- - PMDK —=-

N
a
N
a
N
a

N
°
N
°
N
°

"
7}
"
7}
"
7}

"
o
-
o
"
o

Operations per microsecond

Operations per microsecond

Operations per microsecond

w

P o o A Ve

o 10 20 30 40 50 60 70 80 90 100 o 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Number of threads Number of threads Number of threads \

\a

VIRGINIA TECH

HPC Benchmarks pcalable

Performance

Makalu is not scalable for The per-CPU design and size-agnostic allocation D TR
allocations > 400 bytes, due to design allows POSEIDON to scale linearly bottleneck of PMDK
its global free list causes complete
~Ackermann Benchmark . Kruskal Benchmark N Queens Benchmark saturation of scalability
Makalu = Makalu =- ' Makalu —=-
Poseidon Poseidon Poseidon
PMDK -+ PMDK -+ PMDK -=-

@
2

-
s

w
8

N
s

Operations per microsecond
Operations per microsecond

=

I—c\.\.\“
L 0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Number of threads Number of threads Number of threads

20

\a

I_ VIRGINIA TECH

More Evaluations in the paper..

e Real-World Server Benchmark -- Larson Benchmark
* Integration and Evaluation with Index Structures -- YCSB Benchmark

* Proofs on how Poseidon achieves its safety guarantees

21

\a

[_ VIRGINIA TECH

Conclusion

* We presented Poseidon- A safe and scalable persistent memory allocator
* Poseidon guarantees safety using Intel MPK
* Poseidon's’ per-cpu sub-heap design enables to scale almost linearly

* Consistently outperform its competitors while providing safety guarantees

Thank You

22

\a

VIRGINIA TECH

How can we prevent APl misuse? Safe

Multi-level Hash Table

e API misuse can cause persistent Flowchart
metadata corruption

“un»n

User Frees Address “a

e If a memory allocator allows
erroneous-frees or double-frees to
corrupt allocator metadata, we have
either persistent memory leaks or
overallocation

e We must have a high performing,

scalable means of verifying existing
allocations

23

