
Poseidon: Safe, Fast and Scalable
Persistent Memory Allocator

Anthony Demeri Wook-Hee Kim R. Madhava Krishnan
Jaeho Kim† Mohannad Ismail Changwoo Min

Virginia Tech
†
Gyeongsang National University

Abstract
Persistent memory allocator is an essential component of
any Non-Volatile Main Memory (NVMM) application. A slow
memory allocator can bottleneck the entire application stack,
while an unsecure memory allocator can render applications
inconsistent upon program bugs or system failure. Unlike
DRAM-based memory allocators, it is indispensable for an
NVMM allocator to guarantee its heap metadata safety from
both internal and external errors. An effective NVMM mem-
ory allocator should be 1) safe, 2) scalable, and 3) high per-
forming. Unfortunately, none of the existing persistent mem-
ory allocators achieve all three requisites. For example, we
found that even Intel’s de-facto NVMMallocator–libpmemobj
is vulnerable to silent data corruption and persistent memory
leaks resulting from a simple heap overflow.

In this paper, we propose Poseidon, a safe, fast, and scal-
able persistent memory allocator. The premise of Poseidon
revolves around providing a user application with per-CPU
sub-heaps for scalability and high performance, whilemanag-
ing the heap metadata in a segregated fashion and efficiently
protecting the metadata using a scalable hardware-based pro-
tection scheme, Intel’s Memory Protection Keys (MPK). We
evaluate Poseidon with a wide array of microbenchmarks
and real-world benchmarks, noting: Poseidon outperforms
the state-of-art allocators by a significant margin, showing
improved scalability and performance, while also guarantee-
ing heap metadata protection.

CCS Concepts: • Software and its engineering → Allo-
cation / deallocation strategies.
ACM Reference Format:
Anthony Demeri Wook-Hee Kim R. Madhava Krishnan
Jaeho Kim† Mohannad Ismail Changwoo Min . 2020.
Poseidon: Safe, Fast and Scalable Persistent Memory Allocator.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Middleware ’20, December 7–11, 2020, Delft, Netherlands

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8153-6/20/12. . . $15.00
https://doi.org/10.1145/3423211.3425671

In 21st International Middleware Conference (Middleware ’20), De-

cember 7–11, 2020, Delft, Netherlands. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3423211.3425671

1 Introduction
Non-Volatile Main Memory (NVMM), such as Intel’s Optane
DC Persistent Memory [1, 24], is finally available to the
public. Programs now can directly access NVMM without
kernel intervention through mmap-ed NVMM memory by
DAX-enabled file systems [5, 36, 37].

In this direct, NVMM-access programming model, NVMM
space management is divided into two parts: First, DAX-
enabled file systems manage the NVMM space of an NVMM
device in a coarse-grained manner with files, and then per-
sistent memory allocators manage the NVMM space of the
said NVMM-backed file in a fine-grained manner. Persistent
memory allocators [4, 14, 26, 30] provide memory allocation
and free from/to an NVMM heap, similar to volatile memory
allocators (e.g., jemalloc [9] and TCMalloc [10]). In addition,
most persistent memory allocators also provide transactional
allocation and free of multiple NVMM objects, to support
persistent transactions [14].

The design of persistent memory allocators is fundamen-
tally different from volatile memory allocators in terms of
safety guarantees. Persistent memory allocators must pro-
tect their heap metadata from any unfortunate accident, such
as: program/system crash, sudden power outage, and pro-
gram bugs. Persistent heap metadata contains important
information on allocation status, such as allocation bitmaps
and free memory chunk sizes, so, heap metadata corruption
can cause silent user data corruption or persistent memory
leaks. Furthermore, unlike DRAM, these problems can last
forever, posing a serious threat to application security and
stability. Existing persistent memory allocators [4, 26, 30],
including Intel’s libpmemobj, rely on logging to avoid heap
metadata corruption from a crash but do not protect heap
metadata from program bugs, such as heap overflow. Like
volatile allocators, persistent memory allocators should pro-
vide high performance and multi-core scalability so they do
not become a performance or scalability bottleneck for ap-
plications. In addition, persistent memory allocators should
also provide effective memory capacity scaling, considering
the current generation of NVMM hardware can scale up to
6TB (for a single two-socket system).

https://doi.org/10.1145/3423211.3425671
https://doi.org/10.1145/3423211.3425671

Middleware ’20, December 7–11, 2020, Delft, Netherlands Demeri, et al.

Unfortunately, we found that state-of-the-art persistent
allocators, such as PMDK [15] and Makalu [4], neither guar-
antee heap metadata safety nor provide scalability. Addi-
tionally, we found that a simple programming bug, such as
heap overflow, could permanently corrupt heap metadata
of the PMDK allocator. With this metadata corruption, the
PMDK allocator can allocate already-allocated memory, caus-
ing silent user data corruption, or it can fail to find a free
memory chunk, causing a persistent memory leak. We will
further discuss why existing persistent memory allocator
designs fail to achieve heap metadata safety and scalability
in the following sections (§2, §3).
In this paper, we aim to design a persistent memory allo-

cator, named Poseidon that fulfills three essential require-
ments: (1) complete protection of NVMM heap metadata, (2)
high performance, and (3) high scalability.
First, Poseidon should protect NVMM heap metadata

completely from system and application crashes, misuse
or malicious use of the memory allocator APIs (e.g., double
free, invalid free), and program bugs (e.g., heap overwrite or
underwrite). Existing designs guarantee crash consistency
but fail to prevent metadata corruption from program bugs
or misuse/malicious use of memory allocator APIs as shown
in §3. To guarantee meatadata safety, Poseidon completely
segregates the metadata and the user-data as opposed to the
inline-metadata design in the existing allocators. Poseidon
protects its segregated metadata by leveraging a new hard-
ware feature – Intel Memory Protection Keys (MPK) [17, 27].
MPK can be used to enforce page-based protections in the
user-space without any modifications to the page tables [27].

Second, Poseidon should provide high performance. The
performance of an allocation is critical, as a persistent alloca-
tor is the central entity for managing NVMM space mmap-ed
to a application’s virtual address space. Hence, costs of pro-
tecting heap metadata and guaranteeing crash consistency
should be minimal.

Third, Poseidon should be highly scalable, both in aspects
of concurrency and capacity. The main advantage of persis-
tent memory is large capacity, so any persistent memory
operation should be constant-time as the NVMM capacity in-
creases. Moreover, as multi-core systems are prevalent, high
scalability to manycores is a fundamental requirement for
all persistent memory allocators. Poseidon uses per-CPU
sub-heaps design to achieve high performance and good
multi-core scalability. The per-CPU sub-heap design reduces
contention among the multiple threads and guarantees CPU
local allocation to reduce the latency.

We make the following contributions in this paper:
• We found that the state-of-the-art persistent memory al-
locator provided neither guaranteed heap metadata safety
nor multi-core scalability. In particular, we demonstrate
that the PMDK persistent memory allocator (libpmemobj),
which is the de-facto standard, can be easily and perma-
nently corrupted due to a simple heap overflow bug.

• We introduce a new persistent memory allocator, named
Poseidon. To best of our knowledge, Poseidon is the first

persistent memory allocator to guarantee heap metadata

protection and achieve high performance and scalability

in tandem. Poseidon guarantees metadata safety using
segregated heap metadata layout and efficient hardware-
based memory access protection using Intel Memory Pro-
tection Keys (MPK). Also, Poseidon achieves high perfor-
mance and scalability using per-CPU sub-heap design.

• We implemented Poseidon and evaluated Poseidon for
micro-benchmarks and real-world applications. Our ex-
perimental results show that applications using Poseidon
significantly outperform when compared to other state-
of-the-art persistent memory allocators.
The rest of the paper is organized as follows. §2 provides

the background. §3 is a case study for PMDK, which is a moti-
vation for Poseidon’s approach. §4 describes the overview of
our approach and §5 explains the detail design of Poseidon.
§6 shows Poseidon’s implementation. §7 shows our evalua-
tion results with micro-benchmarks and real-world applica-
tions. §8 discusses the saftey, correctness, and limitation of
Poseidon and provides suggestions for PMDK. §9 compares
Poseidon with previous research and §10 concludes.

2 Background
In this section, we describe how applications use NVMM, via
NVMM-aware file systems and persistent memory allocators.
We then describe the characteristics of and requirements for
effective persistent memory allocators, specifically.

2.1 NVMM and Persistent Memory Allocator
There are two main software models, which grant userspace
applications access to NVMM, as illustrated in Figure 1.

NVMM

DAX
File system

mmap
mapping

K
e
rn

e
l

U
se

rs
p
a
ce App

Persistent
Mem Allocator

File
System
APIs

load/store

Figure 1. NVMM software layers

The first software model
is an NVMM-aware file

system, so-called a DAX
(direct access) file sys-
tem. A DAX file sys-
tem is typically an exten-
sion of a legacy file sys-
tem (such as ext4-DAX
or xfs-DAX), which by-
passes page cache and
directly accesses NVMM
when serving file sys-
tem operations. Applica-
tions can thus use standard file system APIs (e.g., open, read,
and write), tangentially acquiring the benefits inherent of a
fast NVMM device. However, applications must still pay the
price of file system overheads, additionally failing to leverage
the desirable byte-addressability of NVMM. An additional
software model involves using a persistent memory alloca-

tor, provided by a persistent memory library, such as Intel’s

Poseidon: Safe, Fast and Scalable Persistent Memory Allocator Middleware ’20, December 7–11, 2020, Delft, Netherlands

PMDK. A persistent memory allocator creates a persistent
heap (which is essentially a large file on a DAX file sys-
tem), used for storing persistent data. It manages the space
of the persistent heap and provides malloc/free-like APIs.
Thus, a userspace application can directly allocate persistent
memory from the persistent memory allocator and access
it using load/store instructions without suffering from the
significant overhead of the storage stack. Hence, the role of
a persistent memory allocator is, truly, critical in realizing
the potential of NVMM-optimized software and underlying
hardware.

2.2 Design Aspects of Persistent Allocator
We now discuss the general design characteristics of a persis-
tent memory allocator, then contrasting such a design with
the traditional volatile memory allocator design, so as to
understand the challenges and requirements of a persistent
memory allocator.
Persistent pointer representation. Persistent memory
allocators manage one or more memory pools, which col-
lectively encompass a persistent heap. When a persistent
heap is loaded, memory pools are created (as necessary) and
memory-mapped to an application’s virtual address space. In
order to represent a logical persistent-pointer, regardless of
where a memory pool is mapped, across application or sys-
tem restarts, persistent memory allocators [4, 14, 26, 30] typ-
ically adopt 16-byte persistent pointer representation, which
store a memory pool id and offset in the memory pool, such
that an application converts a 16-byte persistent pointer to
an 8-byte raw pointer prior to its direct use.
Transactional allocation. For a persistent memory allo-
cator, the capability for performing transactional allocations
is an additional requirement for supporting persistent trans-
actions, which is a rather popular programming model in
NVMM [7, 13, 20, 22, 34]. Within a persistent transaction,
any NVMM write, including writes to a persistent memory
allocator’s internal metadata, must be atomically (all or noth-
ing) updated to NVMM. Suppose that memory P and Q are
allocated and then a crash happens before the transaction is
persistently committed. The allocations of P and Q must be
reverted, otherwise P and Q will be permanently leaked (as
they will not be reachable from any other persistent point-
ers). When a system failure occurs during a transactional
allocation, a persistent memory allocator must recover the
metadata of the heap and deallocate appropriate space (which
was previously allocated in the transactional allocation) by
using an internal recovery protocol (e.g., logging) [14, 26].
Crash consistency of heap metadata. When compared
to a traditional, volatile memory allocator, we note that a
persistent memory allocator requires additional metadata
management efforts due to its non-volatility. Specifically, an
allocator requires: 1) a root pointer and 2) crash consistency

adherence [4, 14, 26, 30]. A root pointer resides at a well-
known location in a persistent heap. Since an application
cannot know the pointer value of a memory location in a
memory pool across application or system restarts, a root
pointer is used to provide an always-recoverable pointer.
For persistent memory allocators, it is additionally es-

sential to guarantee the crash consistency of heap metadata,
which contains critical metadata, such as allocation bitmaps
and free memory space management information. If heap
metadata is corrupted for some reason (e.g., sudden power
outage, program crash, etc), an application (or system) may
not be able to load its persistent heap, thus losing all perti-
nent data. Note that traditional volatile memory allocators
do not consider crash consistency, as DRAM is volatile. To
guarantee crash consistency of heap metadata, most per-
sistent memory allocators use a logging approach, which
essentially makes a consistent copy of metadata before mak-
ing any changes, logically similar to file-system journaling.
Protection of heapmetadata from program errors. Be-
sides an application crash, program bugs also can corrupt
heap metadata. Suppose, for example, a program has a heap
overflow bug or an integer overflow bug in calculating a
persistent pointer. The program may then erroneously over-
write heap metadata with user data, thus, the heap metadata
will have been corrupted; here, this is especially critical, as,
once heap metadata is corrupted, its corruption is perma-
nent, unlike a volatile memory allocator. In other words,
while similar heap metadata corruption can happen for a
volatile memory allocator, it does not cause any permanent
data corruption; subsequently, protection of this metadata is
expressly critical for any persistent memory allocator. In gen-
eral, persistent heap metadata is vulnerable to program bugs
since the metadata is simply part of a read-writable mmap-ed
region [4, 14, 26]. Since there is no isolation between user
data and metadata of persistent memory allocator, memory
bugs in a program can permanently corrupt the persistent
heap metadata.

We found that commonly-used metadata designs are vul-
nerable. For example, PMDK persistent memory allocator
libpmemobj [14] adopts an in-place metadata design, plac-
ing metadata right before the allocated memory; a simple
heap overflow bug can easily corrupt such in-place metadata.
Makalu [4] adopts mark-and-sweep garbage collection to
discover and fix persistent memory leaks without relying on
logging. However, Makalu also fails to deal with metadata
corruption. In particular, Makalu is vulnerable because if
pointers in an object are corrupted, it can not reclaim any
additional objects which are reachable by the object, similar
to loss of a pointer in a linked list. We doubt if reachability-
based garbage collection is practically useful in any memory
unsafe languages like C and C++.
Scalability. While providing safety, persistent memory allo-
cators should also maintain high performance and manycore

Middleware ’20, December 7–11, 2020, Delft, Netherlands Demeri, et al.

DRAM metadata

NVMM metadata
and user data

Per-thread
Arena

Locks

Free list ...

Global AVL tree
of free chunks

Heap

...

Header

Zone 0

Zone N

...

Header

Chunk 0

Chunk M

Zone

Chunk for large
size allocation

Header

Bitmap
Size User data

...
...

Locks

Free list

Chunk for small
size allocation

Heap metadata
User data

Size User data

...

Figure 2. Architecture of PMDK persistent memory allocator.
PMDK adopts in-place metadata design, which places metadata
right before the allocatedmemory. Heap overwrite bugs can corrupt
in-place metadata, resulting in permanent metadata corruption.

scalability. Since every memory access request is managed
by a persistent memory allocator, it must not be a bottle-
neck on application (or system) performance. In addition,
since commercially available NVMM provides a much larger
capacity than that of DRAM, persistent memory allocators
should also be scalable in memory capacity.

3 The Case of PMDK
In this section, we present our analysis on the de-facto PMDK
allocator library, libpmemobj [16]. We show how a simple
heap buffer overflow can corrupt the heap metadata per-
manently and eventually render the underlying application
irrecoverable.

3.1 Design of libpmemobj
libpmemobj uses both NVMM and DRAM to maximize the
performance. Since the read and write latency of DRAM is
up to 5× faster than that of NVMM [18], libpmemobj stores
frequently accessed data structures in DRAM, as shown in
Figure 2. libpmemobj stores arena structures, free-lists, and
an AVL-Tree in DRAMwhich are mainly used for finding free
memory spaces. The AVL-Tree includes the information for
allocations of large-size objects while the free-list includes
the information for allocations of small size objects.

libpmemobj adopts in-placemetadata layout; it stores meta-
data of the allocated object right before the allocated address.
The in-place metadata essentially stores the size of alloca-
tion and allocation status. This design is useful to improve

performance; since the metadata is located in a nearby space,
libpmemobj can easily find metadata from a cache-line neigh-
bor. Other information on memory chunk are stored in an
allocation bitmap (small size) or a memory block header
(large size). To guarantee the data consistency of the meta-
data, libpmemobj uses undo logging.
However, the design of libpmemobj is vulnerable to pro-

gram bugs. There is no isolation between metadata and
user data and also in-place metadata is stored near user
data so a simple heap overwrite bug can easily corrupt
in-place metadata, consequently corrupting the heap meta-
data [8, 28, 29, 39, 40]. We next show such permanent heap
metadata corruption is possible in PMDK memory allocator
due to heap overflow bugs.

3.2 Heap Metadata Corruption from Program Bugs
Our study of libpmemobj found out that there are three

routes for heap metadata corruption (1) in-place metadata
corruption in a user allocated memory, (2) direct metadata
corruption, and (3) volatile cached metadata corruption in
persistent memory heap.
In-place metadata corruption. In libpmemobj, the meta-
data of an allocated object is stored right before the allocated
object as an object header, storing allocation size and status.
The corruption of this in-place metadata can cause two ir-
recoverable problems. First, as shown in Figure 3, suppose a
program has a heap memory corruption bug and it corrupts
the size in the object header to larger value than its actual
object size (Line 16). When libpmemobj frees the memory, it
actually frees larger memory based on the corrupted size
in header. Such metadata corruption eventually entails that
libpmemobj allocates already-allocated memory (Line 28). If
the program writes the data to the wrongly allocated mem-
ory, it silently causes permanent user data corruption. On the
other hand, if the program corrupts the size in the object to
smaller value as in Line 46, libpmemobj frees smaller memory
based on the corrupted size in header. In this case, libpmemobj
cannot reclaim the remaining space, causing a permanent
persistent memory leak (Line 59). In-place metadata corrup-
tion is problematic in real-world applications because a heap
overwrite bug can easily corrupt in-place metadata of adja-
cent objects, causing irrecoverable data corruption and/or
permanent memory leak.
Direct metadata corruption. The metadata is stored in a
static position of the NVMM space. For example, if we have
a chunk for small-sized objects, the bitmap is stored at the
beginning of the chunk. Since the chunk size is deterministic,
it can be easily estimated where it stored. Hence, if a program
bug modifies the bitmap directly, it can lose stored objects.
Volatile cached metadata corruption. Since libpmemobj

uses both free-lists and an AVL-tree in DRAM, if the infor-
mation in DRAM is corrupted so incorrect, memory alloca-
tion/deallocation can corrupt persistent memory heap. To

Poseidon: Safe, Fast and Scalable Persistent Memory Allocator Middleware ’20, December 7–11, 2020, Delft, Netherlands

1 void pmdk_overlapping_allocation(nvm_heap *heap) {
2 void *p[1024], *free;
3 int i;
4
5 /* Make the NVMM heap full of 64-byte objects */
6 for (i = 0; true; i = ++i % 1024) {
7 if (!(p[i] = nvm_malloc(64)))
8 break;
9 }
10
11 /* Free an arbitrary object but before freeing
12 * the object, corrupt the size in its allocation
13 * header to larger number. It will make the PMDK
14 * allocator corrupt its allocation bitmap. */
15 free = p[i/2];
16 *(uint64_t *)(free - 16) = 1088; /* Corrupt header!!! */
17 nvm_free(free);
18
19 /* Since only one object is freed, the NVMM heap
20 * should be able to allocate only one 64-byte object.
21 * But due to the allocation bitmap corruption
22 * in the previous step, 9 objects will be allocated.
23 * Unfortunately, 8 out of 9 will be already allocated
24 * objects so it will cause user data corruption. */
25 for (i = 0; true; i = ++i % 1024) {
26 if (!(p[i] = nvm_malloc(64)))
27 break;
28 assert(p[i] == free); /* This will fail!!! */
29 }
30 }

31 void pmdk_permanent_leak(nvm_heap *heap) {
32 static void *p[INT_MAX];
33 int i, nalloc;
34
35 /* Make the NVMM heap full of 2MB objects */
36 for (i = nalloc = 0; true; i++, nalloc++) {
37 if (!(p[i] = nvm_malloc(2*1024*1024)))
38 break;
39 }
40
41 /* Free all allocated objects but before freeing objects,
42 * corrupt the size in their allocation header to smaller
43 * number. It will make the PMDK allocator corrupt chunk
44 * headers to smaller in size. */
45 for (i = 0; i < nalloc; i++) {
46 *(uint64_t *)(p[i] - 16) = 64; /* Corrupt header!!! */
47 nvm_free(p[i]);
48 }
49
50 /* Since all objects were freed, the NVMM heap should be
51 * able to allocate the same number of 2MB objects. But
52 * due to the chunk header corruption in the previous
53 * step, there is no such free chunk larger than 2MB.
54 * Thus, allocation will fail. */
55 for (i = 0; true; i++) {
56 if (!(p[i] = nvm_malloc(2*1024*1024)))
57 break;
58 }
59 assert(i == nalloc); /* This will fail!!! */
60 }

Figure 3. PMDK heap metadata corruption caused by heap overwrite. The corruption of in-place metadata in Lines 16, 46 can cause
overlapping allocations (left) and permanent memory leaks (right). For brevity, we use the traditional malloc/free-like APIs instead of using
PMDK’s memory allocation APIs.

prevent this problem, we need to protect both DRAM layers
and NVMM layers.

3.3 Non-scalable Performance
In spite of libpmemobj using a per-thread arena structure, it
does not scale well; one primary reason for the non-scalable
performance of libpmemobj is rebuilding a free-list on DRAM
from NVMM. When libpmemobj deallocates small objects in
NVMM, it unsets the bit in bitmap and does not put the
deallocated space to the free-list in DRAM. When the free-
list becomes empty, libpmemobj re-build the free-list by re-
scanning the NVMM. Such rebuilding can happen frequently
especially when persistent heap utilization is high. More-
over, free-list rebuilding process is sequential, preventing
concurrent memory allocation/free operations.

Another reason for the poor scalability of libpmemobj is its
global AVL-tree, used for indexing the larger free-blocks in
the NVMM pool. When libpmemobj allocates a large memory
space, it scans the AVL-tree in DRAM to find the appropriate
free blocks. The global AVL-tree protected by a lock becomes
a source of contention and hurts scalability of libpmemobj
for large allocations.

4 Overview of Poseidon Architecture
We designed Poseidon aiming to provide (1) complete heap
metadata protection from crash and program bugs, (2) high
scalability as thread count increases, and (3) high perfor-
mance without bottleneck in a critical path. In rest of this

section, we discuss key design features of Poseidon (§4.1-
§4.5), programming interface (§4.6), and how they fulfill
aforementioned design goals (§4.7).

4.1 Per-CPU Sub-Heaps
As illustrated in Figure 4, a Poseidon heap consists of mul-
tiple per-CPU sub-heaps and a superblock maintains the
list of sub-heaps. A sub-heap maintains its own logs for
crash consistency, buddy list for allocation, information of
each memory block, and its own lock for synchronization.
Poseidon creates a sub-heap when the first memory is al-
located on a CPU and places it on the NUMA domain of
the CPU. Our per-CPU design not only reduce contention
among multiple threads but also guarantees allocated mem-
ory is always NUMA local. Hence, a program does not need
to pay remote NVMM costs across the NUMA domain in
the common case. Note that cross-NUMA access overhead is
more expensive in NVMM than DRAM [38]. Also, this allows
multiple NVMM controllers (which are per-NUMA in x86
architecture) to be used, fully utilizing valuable hardware
bandwidth.

4.2 Fully Segregated Metadata
Poseidon is the first persistent memory allocator that adopts
fully segregated metadata design without performance and
space overhead. Poseidon completely segregate heap meta-
data region and user-data region so there is no in-place meta-

data unlike other state-of-the-art persistent allocators (e.g.,
PMDK). Superblock and per-CPU sub-heap metadata exists

Middleware ’20, December 7–11, 2020, Delft, Netherlands Demeri, et al.

NVMM metadata
Superblock

Sub-heap
info

NVMM user data
Per-CPU
sub-heap
metadata

Micro log
Buddy list
Memblock
hash table

offset
size

status
prev_mblk
next_mblk

Memblock
information

Memblock
array

next_free

Per-CPU
sub-heap
user data

User data

Read-writable
region

MPK-protected region
(read-only or read-writable permission)

...

Undo log

...

Lock

Undo log
Lock

Figure 4. Heap layout of Poseidon persistent memory allocator.
Poseidon completely segregate heapmetadata region and user-data
region, managing two regions with different access permissions.
Poseidon grants write permission to the metadata region only
performing allocation and free operations so a program cannot
corrupt the metadata due to no access permission.

as a header, logically placed at the beginning of Poseidon
persistent heap. The rest of area is used for user-data re-
gion, where a program actually accesses its allocated per-
sistent objects. Due to the fully segregated metadata layout,
Poseidon is able to prevent metadata corruption due to heap
over-/under-writes, by maintaining separate memory access
permissions for both metadata and user-data regions. We
next explain how to efficiently manage access permission in
Poseidon.

4.3 Metadata Protection with Intel MPK
By default, a Poseidon metadata region is not given a write
permission. Only during an allocation/free operation, Poseidon
temporarily grants a write permission (i.e., read-writable)
for the metadata region. Moreover, the write permission is
given solely to the thread executing the operation. In other
words, even if the write permission is granted for one thread,
another thread cannot write to the metadata.

Poseidon uses Intel Memory Protection Keys (MPK) [17,
27] to efficiently change access permission of the metadata
region for each thread. To the best of our knowledge, none
of the other memory allocators, including secure memory
allocators [3, 25, 31, 32], exploits Intel MPK to protect their
metadata. When Poseidon initializes the heap, the entire
metadata region is assigned to one of the 16 domains un-
der a protection key, which is encoded in a page table en-
try. Changing the memory access permissions of the region
is cheap; it only takes around 23 CPU cycles using wrpkru

instruction [27]. Furthermore, such permission change is
specific to a given thread, since the access permissions for
a given key are stored in a register, which is, by definition,
core-local; this prevents cross-thread metadata corruption.

Poseidon changes the permission of the metadata region to
read-writable at the entry of allocation/free operations and
reverts it back to read-only at the end of the operation. No-
tably, since MPK arrived prior to NVMM, all x86 processors
that support NVMM also support MPK.
This design entirely prevents metadata corruption from

program bugs, which has not been accomplished by any per-
sistent memory allocator [4, 14, 26, 30]. Note that applying
MPK protection to allocators using in-place metadata design
is not feasible because MPK protection is per-page.

4.4 Metadata Management Using Hash Table
Poseidon manages information on both allocated and free
memory blocks to perform defragmentation and protect
metadata from double-frees and invalid-free bugs. Eachmem-
ory block contains offsets, sizes, and statuses (i.e., allocated or
free). In addition, it contains the offsets of adjacent memory
blocks (used for defragmentation) as well as the informa-
tion for next free memory block in the buddy list (used for
allocations). Accessing the memory block information is
performance critical, as it is necessary for each malloc/free
operation. Also, access performance must be scalable as the
NVMM heap size grows. Poseidon uses a hash table to man-
age memory block information in constant time. To dynam-
ically re-size the hash table, Poseidon uses a multi-level
hash table, similar to one used in F2FS file system [19, 21].
The hash table in Poseidon also ensures the API cannot be
maliciously used to corrupt metadata. Prior to any memory
request (malloc/free), Poseidon uses the hash table to check
if the memory address and its status are correct, so it pre-
vents double-frees and invalid-free bugs, which can corrupt
metadata.

4.5 Crash Consistency
Poseidon uses two logging schemes, namely undo logging
and micro logging, to prevent metadata corruption from
a program/system crash and sudden power outage. By us-
ing undo logging, Poseidon writes the original, unmodified
metadata to the undo log prior to updating the metadata.
This ensures partially written metadata can be restored to
its original state, thus preventing metadata corruption upon
a crash. In addition, Poseidon uses micro logging, which is a
history of memory allocations, for transactional allocation
(poseidon_tx_alloc in Figure 5). Upon transaction commit
(i.e., is_end of poseidon_tx_alloc is true), Poseidon trun-
cates the micro-log. In other words, if the micro-log is not
empty upon restart, the addresses in the micro-logs are al-
located by an uncommitted transaction so Poseidon frees
them to prevent persistent memory leak. The space overhead
for logging is minimal because the undo log and micro log
are truncated every successful allocation/free and successful
transaction commit, respectively.

Poseidon: Safe, Fast and Scalable Persistent Memory Allocator Middleware ’20, December 7–11, 2020, Delft, Netherlands

1 // Initialize a Poseidon heap with a given size and path name
2 heap_t *poseidon_init(const char *heap_path, size_t heap_size);
3 // Deinitialize a Poseidon heap
4 void poseidon_finish(heap_t *heap);
5
6 // Allocate an NVMM space with a requested size
7 nvmptr_t poseidon_alloc(heap_t *heap, size_t sz);
8 // Transactionally allocate a memory with a flag is_end
9 // denoting whether this is the last allocation in a transaction
10 nvmptr_t poseidon_tx_alloc(heap_t *heap, size_t sz, bool is_end);
11 // Deallocate an NVMM space pointed by ptr
12 void poseidon_free(heap_t *heap, nvmptr_t ptr);
13
14 // Convert an NVMM pointer to a raw pointer
15 void *poseidon_get_rawptr(nvmptr_t ptr);
16 // Convert a raw pointer to an NVMM pointer
17 nvmptr_t poseidon_get_nvmptr(void *p);
18
19 // Get the pointer of a root object
20 nvmptr_t poseidon_get_root(heap_t *heap);
21 // Set the pointer of a root object
22 void poseidon_set_root(heap_t *heap, nvmptr_t ptr);

Figure 5. Poseidon API

4.6 Programming Interface
Poseidon provides an intuitive APIs as shown in Fig-

ure 5. A program first need to initiate (or create) a Poseidon
heap using poseidon_init. Upon poseidon_init, Poseidon
loads (or creates) a superblock. Per-CPU sub-heaps will be
loaded (or created) when the first malloc/free operation is
performed on a CPU. The pointer to Poseidon heap can
be freed using poseidon_finish. Besides a singleton allo-
cation API (poseidon_alloc), Poseidon provides a transac-
tional allocation API (poseidon_tx_alloc), in which allocated
addresses are logged to a per-thread micro log. For a trans-
actional allocation, a program should pass the flag (is_end),
notifying whether the allocation is the last one or not. For
the last transactional allocation in a transaction, a transac-
tion is committed by truncating the micro log. Poseidon’s
persistent pointer type nvmptr_t holds 8-byte heap ID, 2-
byte sub-heap ID, and 6-byte offset in a sub-heap. Poseidon
provides pointer conversion APIs between a raw pointer
and a Poseidon persistent pointer (poseidon_get_rawptr,
poseidon_get_nvmptr). Similar to other persistent memory
allocators, a program should convert a persistent pointer to
a raw pointer before accessing the memory. Also, Poseidon
provides APIs to get and set the root pointer of a heap
(poseidon_get_root, poseidon_set_root) so a program can
find NVMM objects from the root pointer.

4.7 How Poseidon Meets the Design Goals

Complete heapmetadata protection. Poseidon provides
complete heap metadata protection from (1) crash, (2) API
misuse, and (3) program’s memory corruption bugs. First,
to protect metadata corruption from crash, Poseidon uses
undo logging for a singleton allocation and micro-logging
for transactional allocation. Next, Poseidon checks if a re-
quested address and its status for free is correct by looking
up the hash table of memory block information in a sub-heap.

If Poseidon could not find the corresponding memory block
(invalid-free bug) or its status is not allocated (double-free
bug), Poseidon ignores the free request. Lastly, Poseidon
completely segregates heap metadata from user data. The
entire heap metadata is protected by an efficient hardware
protection mechanism, Intel’s MPK. The metadata region
becomes read-writable only when running Poseidon code
for a given thread. To best of our knowledge, Poseidon is
the first persistent memory allocator that guarantees the
complete heap metadata protection.
Manycore scalability. The Poseidon heap consists of per-
CPU sub-heaps to minimize synchronization costs of concur-
rent malloc/free operations, while guaranteeing NUMA-local
allocations, to fully utilize scarce hardware resources (espe-
cially memory controllers).
High performance. Poseidon maintains information of
all allocated/free memory blocks to prevent double-free and
invalid-free bugs. Thus, every Poseidon operation requires
to look up and change thememory block information. Poseidon
does this in constant time by using a multi-layer hash table
to manage memory blocks, rather than using tree structures
as in other persistent memory allocators [14, 26]; thus, re-
gardless of the pool size or allocation size, allocation and
free time is constant.

5 Design of Poseidon
5.1 Loading the NVM Heap
Upon initialization of Poseidon, an NVMM heap is loaded.
In the NVMM heap loading phases, an MPK protection key
for metadata is allocated. After that, Poseidon makes sure
that its metadata is a consistent state by checking its own
internal undo log. Next, Poseidon iteratively maps all ex-
isting sub-heaps to persistent memory and maintains their
sub-heap pointers locally. Now, both the superblock and
sub-heaps are mapped to persistent memory. To protect this
memory region, Poseidon allocates an appropriate MPK key
and protecting all metadata regions from external write ac-
cess. After making the memory region safe, Poseidon makes
each sub-heap consistent state by processing their respec-
tive undo logs and micro logs. Finally, all metadata locks are
unlocked, and the NVM heap has been successfully loaded.

5.2 Singleton Allocation
When a user requests a standard allocation (poseidon_alloc),
Poseidon begins by changing the permissions of heap meta-
data to read-writable usingMPK. After that, Poseidon chooses
a sub-heapwhere the requesting thread is running. Poseidon
manages free memory blocks using a buddy list, which is an
array of free lists where each list contains only a certain size
class of free blocks. Hence, based on the requested alloca-
tion size, Poseidon accesses the sub-heap’s internal buddy
list and finds a large enough free block. If the free block is
too large, Poseidon splits the free block into two new free

Middleware ’20, December 7–11, 2020, Delft, Netherlands Demeri, et al.

blocks.When there is no available free block in the buddy list,
Poseidon performs defragmentation, which we will discuss
shortly. If a large enough free block is found, its memory
block status is updated in the hash table. If a collision is
detected during hash table indexing, first, linear probing is
used. If this determines no available blocks exist within a
probing range, defragmentation of the hash table will occur.
Still, if defragmentation does not provide an available index,
the hash table will be extended (via a multi-level hash table).
Note that Poseidon performs undo logging for the meta-
data before modifying its original data. Poseidon updates
the original metadata after the persistent barrier (cache line
flush followed by memory barrier in x86 architecture) of the
undo logging. When all changes in the original metadata
is persisted, Poseidon atomically truncates the undo log.
Finally, Poseidon changes the metadata permission to the
read-only via MPK.

5.3 Transactional Allocation
In a transactional allocation (poseidon_tx_alloc), all internal
metadata is updated identically to the standard allocation
for each sub-allocation, with the addition of persisting the
allocated address in an internal micro-log before truncating
the undo log. After persisting the micro-log, Poseidon trun-
cates the undo log for metadata. Lastly, Poseidon atomically
truncates the internal micro-log as a commit point of a given
transaction (is_end == true).

5.4 Defragmentation
Poseidon triggers defragmentation of a sub-heap when (1)
there is no free memory block in the requested size class,
or (2) there is no space in the hash table after performing
linear probing. In the first case, Poseidon iterates free blocks
in buddy lists whose size is smaller than the requested size
and tries to merge left and right adjacent blocks to form a
larger free block. In the second case, Poseidon iterates all
free memory blocks within the linear probing space and tries
to merge left adjacent blocks to form a larger free block and a
free space in the linear probing space. By using this approach,
defragmentation is performed at a local level, which is a
both scalable and high performance, contrary to the design
of existing persistent memory allocators, which perform
defragmentation on a global size-independent level [26] or a
global level [4].

5.5 Deallocation
Memory deallocations from a sub-heap follow a near-inverse
process to that of memory allocations. First, Poseidon ac-
quires the write permission to the metadata using MPK.
Then, based on the given memory address to free, Poseidon
searches the hash table on an appropriate sub-heap, using
the address as a key. If the address is found, Poseidon per-
forms undo logging for the metadata of the memory block.

After persisting the undo log, Poseidon changes the mem-
ory block status to free and insert it to the tail end of its
respective size class of the buddy list to prevent immediate
reuse of the allocation. When all metadata updates success-
fully persisted, Poseidon truncates undo log as a commit
point of the deallocation. Finally, Poseidon changes the sub-
heap metadata permission to read-only using MPK. Note
that Poseidon supports preventing invalid free and double
free. If the address is not found in the hash table, the free is
an invalid free. If the status of the address is in a free status,
the free is a double free. Thus, these frees are both rejected.

5.6 Space Management of Heap Metadata
Poseidon reduces its metadata footprint by hole-punching

(using the fallocate syscall) unused metadata pages and re-
turning them to the underlying filesystem. Poseidon primar-
ily uses this technique to eliminate unused levels of its multi-
level hash table. When Poseidon needs more memory for
metadata, it first accesses a "hole-punched" region of mem-
ory. In this case, Poseidon needs only write to its known
address because the region has already been mapped then
underlying filesystem will allocate an NVMM page. If there
is no space in the hole-punched region, Poseidon extends
the mapping of the metadata region. With this, Poseidon
utilizes the hash table memory only when needed.

5.7 Synchronization
Poseidon protects a sub-heap from concurrent access by ac-
quiring the lock of a per-CPU sub-heap. Therefore, each sub-
heap can be concurrently accessed without any interference.
Due to the per-CPU design, usually there is no contention
in accessing a sub-heap. The contention happens only when
a thread running on CPU X tries to free a memory in a sub-
heap belonging to CPU Y. In this case, a local thread may
contend with non-local treads performing free. However, we
empirically found that such contention happens very rarely
so it does not harm scalability.

5.8 Crash Consistency and Recovery
Upon initialization of Poseidon, all undo logs and micro
logs are checked for consistency of metadata. In Poseidon,
a successful allocation/deallocation results in the truncation
of both undo logs and micro logs. It means that the presence
of data within either log indicates a crash occurred. When an
undo log is not empty, Poseidon performs crash recovery by
reverting partial changes within the log to restore the heap
metadata. To do this, Poseidon first changes the permissions
of the heap-metadata to have read-write access using MPK.
After that, the contents of the undo log are copied to the
original metadata location and persisted to storage. When
the original metadata is recovered and persisted, Poseidon
truncates the undo log atomically. If a micro log is not empty,
Poseidon deallocates all addresses in the micro log then

Poseidon: Safe, Fast and Scalable Persistent Memory Allocator Middleware ’20, December 7–11, 2020, Delft, Netherlands

Poseidon truncates the micro log. Since Poseidon’s recov-
ery process truncates both undo logs and redo logs when it is
successfully completed, Poseidon can still detect whether a
crash happens. If a crash occurs during the recovery process,
Poseidon will replay both the undo log and micro log again
and truncates them. Note that replaying logs are idempo-
tent, so it does not affect any consistency of data even if
Poseidon replays the logs multiple times. Finally, Poseidon
sets permission of the metadata to read-only and completes
the recovery process.

6 Implementation
We implement Poseidon in C, comprising around 16,000
lines of code and 18,000 lines of associated unit tests. Since
there are few open-source persistent memory allocators,
and it is non-trivial to separate in-place metadata designs
from existing, open-source persistent memory allocators, we
wrote Poseidon from scratch. To guarantee the persistence
of Poseidon’s data in NVMM, we use the clwb instruction
with sfence, which efficiently flushes CPU cache lines to
NVMM.

7 Evaluation
Weevaluate the scalability of Poseidon compared to PMDK [14]
and Makalu [4] using a microbenchmark and a simulated
server workload (§7.2, §7.3). We then show the performance
impact of real-world applications with Poseidon, to demon-
strate the impact of Poseidon (§7.4, §7.5).

7.1 Evaluation environment
We evaluate the performance of Poseidon using a system
that consists of 2 socket, 56 cores (112 logical cores) Intel
Xeon Platinum 8280M CPU, 768GB DRAM, and 3.0TB (12 x
256GB) of Intel Optane DC Persistent Memory (DCPMM).
Note that since the current generation of Intel OptaneDCPMM
supports only up to two socket machines, two sockets are
the maximum number of the socket that we can conduct the
experimental evaluation as for now.

Our experiments were conducted on the Linux 4.19.0 ker-
nel. Regarding the software being evaluated, we use the most
recent stable versions for both persistent memory allocators
as of this writing (PMDK v1.7). We do not include PAlloca-
tor [26] because its source code is not publicly available.

7.2 Microbenchmark
We first ran a microbenchmark that performs allocations
and frees in random order to quantitatively show the per-
formance gain from the per-CPU sub-heap, multi-layer hash
table based metadata management, and low latency MPK
based metadata protection in Poseidon. The microbench-
mark performs 100 allocations, and 100 frees in a random
order, repeating this process such that a total of 1 million

allocations/frees, with varying numbers of threads and allo-
cation sizes, are performed. The microbenchmark does not
perform any inter-thread free to show the ideal maximum
performance.
Poseidon. As Figure 6 shows, Poseidon significantly out-
performs all persistent memory allocators by upto 60× and
shows linear scalability upto 64 threads. Poseidon is able
to maintain scalability by using per-CPU sub-heap contained
metadata.Moreover, constant time formemory allocation/free
comes from hash-table based metadata management, which
tangentially improves the scalability of Poseidon. Finally,
our MPK based metadata protection is able to provide safety
at low latency. So Poseidon shows better performance and
scalability against other persistent memory allocators nearly
for all contention levels while providing metadata protection.
Makalu. Makalu [4] shows poor scalability, as both the al-
location size increases and the number of threads increases.
The main reason for its poor scalability is its metadata de-
sign, which incorporates a global chunk list for allocations
greater than 400 bytes. When an allocation size is larger than
400 bytes is requested, a global lock becomes a scalability
bottleneck. Furthermore, it also places additional global lock-
ing constraints on allocations less than 400 bytes by using a
global reclaim list. The global reclaim list, which maintains a
list of free blocks to be distributed among thread-local free-
lists, grows when a given thread’s local free-list has a large
number of free-list blocks available. In other words, when a
thread’s local free-list has a large number of free blocks avail-
able, it adds them to the global reclaim list (which requires
global locking). So, when performing 100 allocations and 100
frees, even with a block size of 256 bytes, we observe a scal-
ability bottleneck due to the global reclaim list; for example,
in Figure 6, with block size less than 400 bytes, we observe a
6× performance loss, but, with a block size greater than 400
bytes, we observe greater than a 1000× performance loss.
PMDK libpmemobj. The de-facto standard persistent mem-
ory allocator PMDK [14] shows better scalability thanMakalu.
However, it also saturates the performance when the num-
ber of threads is larger than 32 regardless of the allocation
sizes. The main reason for the saturation of performance is
the internal design of PMDK, as shown in §3. In PMDK, a
given heap contains 12 arenas, each of which has its own
lock and accesses a global AVL tree of free memory chunks,
rather limiting each arena to its own metadata. As such,
access to a given region within the global AVL tree necessar-
ily introduces a scalability bottleneck, particularly observed
when the number of threads begins to outgrow the number
of arenas. In addition, PMDK introduces an additional im-
plementation bottleneck to their system by using a global
action log to batch free operations together. This design helps
amortize the overhead involved in flushing data to persistent
memory. However, for free-heavy applications, this action
log becomes a source of contention as clearly observed in

Middleware ’20, December 7–11, 2020, Delft, Netherlands Demeri, et al.

0

5

10

15

20

25

0 16 32 48 64
0

5

10

15

20

25

0 16 32 48 64
0

5

10

15

20

25

0 16 32 48 64

0

5

10

15

20

25

0 16 32 48 64
0

5

10

15

20

25

0 16 32 48 64
0

5

10

15

20

25

0 16 32 48 64

M
op

s/
se
c

threads

256B

Poseidon

threads

1KB

PMDK

threads

4KB

Makalu

M
op

s/
se
c

threads

128KB

threads

256KB

threads

512KB

Figure 6. Performance of a pair of 100 mallocs and 100 frees in
random order with different allocation sizes.

0

5 × 106

1 × 107

1.5 × 107

2 × 107

2.5 × 107

0 16 32 48 64

O
ps
/s
ec

threads

Poseidon
PMDK
Makalu

Figure 7. Performance of Larson benchmark.

Figure 6, where PMDK exhibits inverse performance as the
number of threads surpasses 16.

7.3 Larson benchmark: Real-World Server
Allocation Pattern

The Larson benchmark [2] simulates a server: performing
multiple, concurrent, cross-thread allocations, and deallo-
cations. Larson benchmark generates N objects of alloca-
tion/deallocation while varying the size of objects randomly.
We run the Larson benchmark for 10 seconds with a varying
number of threads, as in the PAllocator [26]. Similar to the
results of our microbenchmarks, Poseidon significantly out-
performs other persistent memory allocators up to 4×. Once
again, this is due to the bottlenecks which are observed and
noted in §7.2.

7.4 Real World Application: High Performance
Benchmark

To further demonstrate Poseidon’s performance and scal-
ability, we provide real-world examples of allocator use in
computation-intensive applications. In these high-performance
benchmarks, we evaluate Poseidon, Makalu, and PMDK in
real-world scenarios, which involve heavy manipulation of
allocatedmemory regions.We use the following benchmarks:
the Ackermann benchmark, the Kruskal benchmark, and the
N Queens benchmark. We run all of these benchmarks while
varying the number of threads.
Ackermann benchmark. We perform a single, 1GB allo-
cation, which is filled in with Ackermann results upto (4, 5).
The 1GB region is allocated, utilized as a cache to compute
Ackermann results, deallocated, and repeated 100,000 times.
Poseidon performs upto 242× better than Makalu and 6.4×
better than PMDK, respectively.We similarly observe the bot-
tlenecks previously discussed due to the design constraints
of both Makalu and PMDK.
Kruskal benchmark. We solve Kruskal Minimum Span-
ning Tree (MST) implementations of order 5, each of which
performs three allocations of 512 bytes before solving the
MST, deallocating the memory, and repeating the process
100,000 times. Makalu shows better performance when the
number of threads is less than eight because Makalu’s crash
consistency protocol does not rely on the logging scheme. In-
stead, it uses the mark-and-sweep garbage collection. More-
over, the main scalability limitations come from global meta-
data management structures. So, Makalu shows better perfor-
mance when the number of threads and allocations are small.
However, when the number of threads is larger, the per-
formance gaps between Poseidon, Makalu, and PMDK are
much larger. Overall, Poseidon outperforms PMDK, Makalu,
by up to 4.3×, 16.6×, respectively.
N Queens benchmark. We solve N Queens puzzles of
board size 8 using one 32-byte allocation, which is deallo-
cated when the N Queens puzzles are complete. Similar to
the Ackermann and Kruskal benchmarks, this process is re-
peated 100,000 times. The performance of Poseidon is 2.3×
and 24.8× better than Makalu and PMDK, respectively. In-
terestingly, Makalu shows better performance than PMDK,
because of delayed mapping of memory which maps the
memory closer to the running thread’s socket. PMDK cre-
ates pools in the main thread, which maps memory poten-
tially farther from a running thread’s socket. Thus there is
a high possibility of failing to utilize the maximum number
of memory controllers and increasing socket interconnect
contention.

7.5 YCSB benchmark
The YCSB benchmark [6, 35] simulates a key-value store
scenario, performing multiple, concurrent, cross-thread allo-
cations, and deallocations in a persistent index structure. We

Poseidon: Safe, Fast and Scalable Persistent Memory Allocator Middleware ’20, December 7–11, 2020, Delft, Netherlands

0
20
40
60
80
100
120
140

0 16 32 48 64
0
5
10
15
20
25
30
35
40
45

0 16 32 48 64
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 16 32 48 64

M
op

s/
se
c

threads

Ackermann

Poseidon

threads

Kruskal

PMDK

threads

nQueens

Makalu

Figure 8. Performance of real-world, high performance benchmark.

0

1

2

3

4

5

0 16 32 48 64
0
1
2
3
4
5
6
7
8

0 16 32 48 64

M
op

s/
se
c

threads

Load

Poseidon

threads

Workload A

PMDK
Makalu

Figure 9. Performance of YCSB benchmark.

modified FAST-FAIR B+-tree [12], a persistent byte-addressable
B+-tree to use Poseidon, PMDK, and Makalu persistent
memory allocator. In this evaluation, we first load 10 mil-
lions of keys into the B+-tree and execute 10 millions of
operations for Workload A. Note that, since YCSB workloads
are mostly read-intensive workloads, we choose memory
allocation heavy workload Load and Workload A. As Figure 9
shows, Poseidon’s performance mirrors that of PMDK. The
interesting point is that even though Poseidon uses fully
segregated metadata, it shows similar or slightly better per-
formance than PMDK. Moreover, Poseidon guarantees full
protection of heap metadata from program bugs. Note that
the performance of the YCSB benchmark mainly depends on
the performance of the index structure. For example, when
we execute Workload A, the YCSB benchmark first needs to
traverse the B+-tree internal nodes to find the proper leaf
node (data node). This traverse operation introduces the
overhead to the YCSB benchmark, so the memory alloca-
tion overhead is relatively smaller than previous evaluations.
Moreover, since the bandwidth of Intel Optane DCPMM is
limited [38], both Poseidon and PMDK shows performance
degradation when the number of thread is larger than 32.
Makalu shows similar performance to Poseidon and PMDK
upto 16 threads. However, when the thread count is larger
than 16, the performance significantly degraded due to its
non-scalable metadata design.

8 Discussion and Limitations
Safety and correctness. Poseidon enforces the safety in-
variant such that the heap metadata is written only inside the
Poseidon code, where we grant write permissions during
its execution. Even if a writer accidentally spawns (forking
a new process) or triggers other threads unintentionally, the
other thread/process cannot compromise the heap metadata
because MPK is per-CPU (i.e., per-thread). In terms of cor-
rectness, Poseidon is built on top of undo and micro logging
which are widely used for transaction recovery and already
well-proved regarding correctness.
Mitigating metadata corruptions by program bugs in
PMDK. Since PMDK follows the in-place metadata design,
it is hard to adopt Intel MPK for PMDK because MPK projec-
tion has per-page (4KB) granularity. While we think PMDK’s
in-place metadata design, storing heap metadata in NVMM
user data area, is fundamentally susceptible to metadata
corruption by program bugs, there is an urgent need to
harden de-facto standard PMDK allocator. One mitigation
approach is adding a canary value to its in-place metadata
structures; when freeing an NVMM memory, a persistent al-
locator checks if its in-place metadata is corrupted by check-
ing the canary value. If the canary is corrupted, the allocator
can skip freeing a memory so as not to further propagate
metadata corruption. While this neither guarantees the meta-
data protection nor prevents persistent memory leak, it can
mitigate the side effect of in-place metadata corruption by
stopping the propagation of its corruption.
Limitations. One limitation is that Poseidon cannot guar-
antee NVMM heap metadata protection from the malicious
use of Intel MPK. In particular, if an attacker can hijack pro-
gram control flow and execute a non-privileged instruction
wrpkru to change the permission of the heap metadata region
to read-writable permission, she will succeed in manipulat-
ing Poseidon metadata. While this kind of security attack is
out of scope of this paper, we can prevent such attacks by
adopting binary inspection to get rid of potential misuse of
MPK, similar to Hodor [11] and ERIM [33].

Another limiation is that current our Poseidon uses multi-
level hash table for the memory management. The multi-
level hash table is good enough to support the Intel Optane
DCPMMcapacity (3 TB) on our evaluation systems. However,
when the capacity of NVMM is much larger than that we
used in this paper, our Poseidon prototype can be further
optimized for the huge capacity by using a more advanced
index scheme.

9 Related Work
Persistent memory allocators. Recently, many studies
for persistent allocators have been conducted to achieve scal-
ability and persistence on many-core systems. However, we

Middleware ’20, December 7–11, 2020, Delft, Netherlands Demeri, et al.

observe that none of allocators are scalable on a large num-
ber of cores and guarantee complete metadata protection.
PMDK allocator libpmemobj [14] maintains per-thread arena
structure for high scalability but, as we discussed, the lim-
ited number of per-thread arena, a global AVL tree for free
chunks, and reloading free list become a performance and
scalability bottleneck. More importantly, PMDK allocator is
vulnerable to permanent metadata corruption particularly
due to its in-place metadata design.

Makalu [4] suffers from limited manycore scalability due
to several global metadata management structures. Makalu’s
crash consistency protocol relies on the mark-and-sweep
garbage collection to discover and fix the persistent mem-
ory leak. However, the mark-and-sweep garbage collection
approach is vulnerable to metadata corruption because if
pointers in an object are corrupted, it will not be able to
reclaim additional objects which are reachable by the ob-
jects. Truly, it is questionable if reachability-based garbage
collection is practically useful in memory unsafe languages
like C and C++.
PAllocator [26] attempts to provide scalability by main-

taining small and big object allocators per core but it still
has a problem with a large number of cores because it uses
tree structure to manage its memory allocation information
as in PMDK. Also, PAllocator does not guarantee metadata
safety from program bugs.

nvm_malloc [30] is a persistent allocator based on jemal-
loc [9]. nvm_malloc supports safe NVMM allocations with
two distinct steps: reserve and activation. Applications cre-
ate persistent links to the allocated region before updating
metadata to track objects. It also does not provide metadata
safety from program bugs.
Scalable memory allocators. The majority of persistent
memory allocators are influenced by scalable memory allo-
cators designed for DRAM. Hoard [2] improves performance
of applications by maintaining per-processor heaps so as
to reduce contention. TCMalloc [10] provides fast memory
allocation by using thread-local cache when allocating small
size objects, otherwise using fine grained locking to manage
a central heap. jemalloc [9] is a scalable memory allocator
which is widely used in cross-platform applications. It was
specifically designed for minimal memory fragmentation
and multi-threaded concurrency support. SSMalloc [23] is
another scalable memory allocator focused on achieving low
latency with lock-free synchronization.
Secure memory allocators. State-of-the-art secure allo-
cators [3, 25, 31, 32] mostly adopt a segregated metadata
layout and rely on some form of randomization to bolster
their security. Unfortunately, none of them are designed for
NVMM, and suffer from high runtime and memory over-
head. None of these use MPK, like Poseidon does, to pro-
tect heap metadata, so none of them can truly guarantee
metadata protection. DieHard [3] proposes the notion of

probabilistic memory safety, which is an ideal but unimple-
mentable runtime system that provides infinite heap seman-
tics. DieHard uses probabilistic guarantees to avoid memory
errors. DieHarder [25] randomly allocates pages over the
entire possible address space, and carves them up into size-
segregated chunks tracked by an allocation bitmap. Both
techniques suffers from a high overhead of up to 40% on
allocation intensive benchmarks. FreeGuard [31] attempts
to combine techniques from both BIBOP (Big Bag of Pages)
and freelist allocators. The main approach is acquiring a
large block, which is then divided into multiple sub-heaps.
FreeGuard uses a per-thread sub-heap design. Guarder [32]
is similar in design to FreeGuard, but is mainly concen-
trated on randomization-entropy and tunable security guar-
antees [32]. Guarder introduces allocation and deallocation
buffers, which choose objects randomly on allocation. Un-
fortunately, both Guarder and FreeGuard suffer from high
memory overheads of up to 37%.

10 Conclusion
We presented Poseidon, a safe and scalable persistent mem-
ory allocator. To the best of our knowledge, Poseidon is the
first persistent allocator guaranteeing complete metadata
protection. We illustrated how the existing defacto mem-
ory allocator (PMDK) is vulnerable to silent data corruption
and persistent memory leaks. In order to ensure metadata
protection, Poseidon demonstrated its management of heap
metadata in a segregated fashion, guarded from both inter-
nal and external errors by using MPK. To achieve better
scalability and performance, Poseidon was shown to utilize
per-CPU sub-heaps, managing sub-heap metadata by host-
ing the buddy list and free blocks of respective hash tables on
the same CPU. Critically, we evaluated Poseidon against the
state-of-art memory allocators, such as PMDK and Makalu,
with microbenchmarks, real-world, computation-intensive
applications, and NVMM-optimized persistent index with
YCSB benchmark. For all cases, Poseidon shows seamless
scalability and superior performance, as opposed to its coun-
terparts, while simultaneously being the only persistent
memory allocator also guaranteeing vital metadata safety.

Acknowledgement
We thank our shepherd Yu Hua and the anonymous review-
ers for their insightful comments. This work was supported
by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government
(MSIT) (No. 2014-3-00035)

References
[1] Anandtech. 2018. Intel Launches Optane DIMMs Up To 512GB:

Apache Pass Is Here! https://www.anandtech.com/show/12828/intel-

launches-optane-dimms-up-to-512gb-apache-pass-is-here

[2] Emery D Berger, Kathryn S McKinley, Robert D Blumofe, and Paul R
Wilson. 2000. Hoard: A Scalable Memory Allocator for Multithreaded

https://www.anandtech.com/show/12828/intel-launches-optane-dimms-up-to-512gb-apache-pass-is-here
https://www.anandtech.com/show/12828/intel-launches-optane-dimms-up-to-512gb-apache-pass-is-here

Poseidon: Safe, Fast and Scalable Persistent Memory Allocator Middleware ’20, December 7–11, 2020, Delft, Netherlands

Applications. In Proceedings of the 9th ACM International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS). Cambridge, MA, 117–128.
[3] Emery D. Berger and Benjamin G. Zorn. 2006. DieHard: Probabilistic

Memory Safety for Unsafe Languages. In Proceedings of the 2006 ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI). Ottawa, Canada, 158–168.
[4] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. 2016.

Makalu: Fast Recoverable Allocation of Non-volatile Memory. In Pro-

ceedings of the 27th Annual ACM Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA). ACM, Am-
sterdam, Netharlands, 677–694.

[5] Dave Chinner. 2015. xfs: updates for 4.2-rc1. https://lwn.net/Articles/

635514/

[6] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing

(SoCC) (Indianapolis, Indiana, USA). ACM, Indianapolis, Indiana, USA,
143–154.

[7] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2018. Romulus:
Efficient Algorithms for Persistent Transactional Memory. In Proceed-

ings of the ACM symposium on Parallelism in algorithms and architec-

tures (SPAA). Vienna, Austria, 271–282.
[8] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan Shoshitaishvili,

Christopher Kruegel, and Giovanni Vigna. 2018. Heaphopper: bringing
bounded model checking to heap implementation security. In Proceed-

ings of the 27th USENIX Security Symposium (Security). Baltimore, MD,
99–116.

[9] Jason Evans. 2006. A Scalable Concurrent malloc (3) Implementation
for FreeBSD. In Proceedings of the BSDCan. Ottawa, Canada.

[10] Google. 2007. TCMalloc : Thread-Caching Malloc. http://goog-

perftools.sourceforge.net/doc/tcmalloc.html.
[11] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John

Criswell, Michael L Scott, Kai Shen, and Mike Marty. 2019. Hodor:
Intra-Process Isolation for High-Throughput Data Plane Libraries. In
Proceedings of the 2019 USENIX Annual Technical Conference (ATC).
Renton, WA, 489–503.

[12] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
2018. Endurable Transient Inconsistency in Byte-addressable Persis-
tent B+-tree. In Proceedings of the 16th USENIX Conference on File and

Storage Technologies (FAST). Oakland, California, USA, 187–200.
[13] Intel. 2016. C++ bindings for libpmemobj (part 6) - transactions. http:

//pmem.io/2016/05/25/cpp-07.html

[14] INTEL. 2019. Persistent Memory Development Kit. http://pmem.io/

[15] INTEL. 2019. PMDK man page: pmemobj_alloc. http://pmem.io/

pmdk/manpages/linux/v1.5/libpmemobj/pmemobj_alloc.3

[16] INTEL. 2020. PMDK man page: libpmemobj - persistent memory
transactional object store. https://pmem.io/pmdk/manpages/linux/

master/libpmemobj/libpmemobj.7.html.
[17] Intel Corporation. 2019. Intel 64 and IA-32 Architectures Software

Developer’s Manual. https://software.intel.com/en-us/articles/intel-

sdm.
[18] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

samanMemaripour, Yun Joon Soh, ZixuanWang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. 2019. Basic Performance
Measurements of the Intel Optane DC Persistent Memory Module.
https://arxiv.org/abs/1903.05714v2

[19] Jaegeuk Kim. 2012. f2fs: introduce flash-friendly file system . https:

//lwn.net/Articles/518718/.
[20] R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony

Demeri, Changwoo Min, and Sudarsun Kannan. 2020. Durable Trans-
actional Memory Can Scale with Timestone. In Proceedings of the 25th

ACM International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS). Lausanne, Switzer-
land, 335–349.

[21] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho.
2015. F2FS: A new file system for flash storage. In Proceedings of the

13th USENIX Conference on File and Storage Technologies (FAST). Santa
Clara, California, USA, 273–286.

[22] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei
Wu, Weimin Zheng, and Jinglei Ren. 2017. DudeTM: Building Durable
Transactions with Decoupling for Persistent Memory. In Proceedings

of the 22nd ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS). Xi’an,
China, 329–343.

[23] Ran Liu and Haibo Chen. 2012. SSMalloc: A Low-latency, Locality-
conscious Memory Allocator with Stable Performance Scalability. In
Proceedings of the 3rd Asia-Pacific Workshop on Systems (APSys). Seoul,
South Korea, 1–6.

[24] Micro. 2019. 3D XPoint Technology. https://www.micron.com/

products/advanced-solutions/3d-xpoint-technology

[25] Gene Novark and Emery D Berger. 2010. DieHarder: Securing the
Heap. In Proceedings of the 17th ACM Conference on Computer and

Communications Security (CCS). Chicago, IL, 573–584.
[26] Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner,

Thomas Willhalm, and Grégoire Gomes. 2017. Memory Management
Techniques for Large-scale Persistent-main-memory Systems. In Pro-

ceedings of the 43rd International Conference on Very Large Data Bases

(VLDB). TU Munich, Germany, 1166–1177.
[27] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim.

2019. Libmpk: Software Abstraction for Intel Memory Protection
Keys (Intel MPK). In Proceedings of the 2019 USENIX Annual Technical

Conference (ATC). Renton, WA, 241–254.
[28] Andrew T Phillips and Jack SE Tan. 2003. Exploring Security Vulnera-

bilities by Exploiting Buffer Overflow using theMIPS ISA. ACM SIGCSE

Bulletin 35 (2003), 172–176. https://doi.org/10.1145/792548.611962

[29] Mustapha Refai. 2006. Exploiting a Buffer Overflow using Metasploit
Framework. In Proceedings of the 2006 International Conference on

Privacy, Security and Trust: Bridge the Gap Between PST Technologies

and Business Services. New York, USA, 1–4.
[30] David Schwalb, Tim Berning, Martin Faust, Markus Dreseler, and

Hasso Plattner. 2015. nvm malloc: Memory Allocation for NVRAM.
In Proceedings of the International Workshop on Accelerating Analytics

and Data Management Systems Using Modern Processor and Storage

Architectures (ADMS). Kohala Coast, HI, 61–72.
[31] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping

Liu. 2017. FreeGuard: A Faster Secure Heap Allocator. In Proceedings

of the 24th ACM Conference on Computer and Communications Security

(CCS). Dallas, TX, 2389–2403.
[32] Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin, and Tongping

Liu. 2018. Guarder: A Tunable Secure Allocator. In Proceedings of the

27th USENIX Security Symposium (Security). Baltimore, MD, 117–133.
[33] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael

Sammler, Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Effi-
cient In-process Isolation with Protection Keys (MPK). In Proceedings

of the 28th USENIX Security Symposium (Security). Santa Clara, CA,
1221–1238.

[34] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory. In Proceedings of the 16th
ACM International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS). Newport Beach, CA,
91–104.

[35] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen
Zhang, Michael Kaminsky, and David G. Andersen. 2018. Building a
Bw-Tree Takes More Than Just Buzz Words. In Proceedings of the 2018

ACM SIGMOD/PODS Conference. Houston, TX, USA, 473–488.

https://lwn.net/Articles/635514/
https://lwn.net/Articles/635514/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://pmem.io/2016/05/25/cpp-07.html
http://pmem.io/2016/05/25/cpp-07.html
http://pmem.io/
http://pmem.io/pmdk/manpages/linux/v1.5/libpmemobj/pmemobj_alloc.3
http://pmem.io/pmdk/manpages/linux/v1.5/libpmemobj/pmemobj_alloc.3
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/libpmemobj.7.html
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/libpmemobj.7.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://arxiv.org/abs/1903.05714v2
https://lwn.net/Articles/518718/
https://lwn.net/Articles/518718/
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://doi.org/10.1145/792548.611962

Middleware ’20, December 7–11, 2020, Delft, Netherlands Demeri, et al.

[36] Matthew Wilcox. 2014. Add Support for NV-DIMMs to Ext4. https:

//lwn.net/Articles/613384/

[37] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File Sys-
tem for Hybrid Volatile/Non-volatile Main Memories. In Proceedings

of the 14th USENIX Conference on File and Storage Technologies (FAST).
Santa Clara, California, USA, 323–338.

[38] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. 2020. An Empirical Guide to the Behavior and Use
of Scalable Persistent Memory. In Proceedings of the 18th USENIX

Conference on File and Storage Technologies (FAST). Santa Clara, CA,
169–182.

[39] Lu Zhang and Steven Swanson. 2019. Pangolin: A Fault-Tolerant
Persistent Memory Programming Library. In Proceedings of the 2019

USENIX Annual Technical Conference (ATC). Renton, WA, 897–912.
[40] Pengfei Zuo and YuHua. 2018. SecPM: a Secure and Persistent Memory

System for Non-volatile Memory. In Proceedings of the USENIX Work-

shop on Hot Topics in Storage and File Systems (HotStorage). Boston,
MA.

https://lwn.net/Articles/613384/
https://lwn.net/Articles/613384/

	Abstract
	1 Introduction
	2 Background
	2.1 NVMM and Persistent Memory Allocator
	2.2 Design Aspects of Persistent Allocator

	3 The Case of PMDK
	3.1 Design of [0.5]libpmemobj
	3.2 Heap Metadata Corruption from Program Bugs
	3.3 Non-scalable Performance

	4 Overview of Poseidon Architecture
	4.1 Per-CPU Sub-Heaps
	4.2 Fully Segregated Metadata
	4.3 Metadata Protection with Intel MPK
	4.4 Metadata Management Using Hash Table
	4.5 Crash Consistency
	4.6 Programming Interface
	4.7 How Poseidon Meets the Design Goals

	5 Design of Poseidon
	5.1 Loading the NVM Heap
	5.2 Singleton Allocation
	5.3 Transactional Allocation
	5.4 Defragmentation
	5.5 Deallocation
	5.6 Space Management of Heap Metadata
	5.7 Synchronization
	5.8 Crash Consistency and Recovery

	6 Implementation
	7 Evaluation
	7.1 Evaluation environment
	7.2 Microbenchmark
	7.3 Larson benchmark: Real-World Server Allocation Pattern
	7.4 Real World Application: High Performance Benchmark
	7.5 YCSB benchmark

	8 Discussion and Limitations
	9 Related Work
	10 Conclusion
	References

