
POSEIDON: Safe, Fast and Scalable Persistent Memory Allocator
Wook-Hee Kim Anthony Demeri R. Madhava Krishnan

Jaeho Kim† Mohannad Ismail Changwoo Min
Virginia Tech †Gyeongsang National University

1 Introduction
Persistent Memory (PM) allocator is a critical component in
Non-volatile Main Memory (NVMM) software stack manag-
ing program’s NVMM space atop NVMM-aware file system
(e.g., ext4-DAX). It provides memory allocation/free from/to
an NVMM heap similar to the traditional volatile memory
allocator. Like volatile memory allocator (e.g., jemalloc, tc-
malloc), PM allocators should provide high performance
and good multi-core scalability to effectively support a wide
range of PM applications. However, the design of a PM
allocator is fundamentally different than that of a DRAM
allocator; especially in terms of the safety guarantees. Un-
like the DRAM, NVMM is durable; so any corruption in the
NVMM heap lasts forever and may render the underlying
application irrecoverable. Therefore, a PM allocator must
protect the NVMM heap metadata from a system crash as
well as program bugs. The NVMM heap metadata corrup-
tion may cause serious consequences such as irrecoverable
heap state, silent user data corruption and persistent memory
leaks.

Although existing PM allocators [5, 7] rely on logging for
heap metadata consistency, they are still vulnerable to heap
metadata corruption due to program bugs. In particular, we
found that a simple buffer overflow in a program can cause
PMDK to reallocate the already allocated memory or fail
to free the entire allocated space causing silent user-data
corruption or persistent memory leak.

In this work, we aim to overcome the safety, scalability,
and performance limitations of existing PM allocators and
propose a novel persistent memory allocator, POSEIDON. To
best of our knowledge, POSEIDON is the first PM allocator to
guarantee complete heap metadata protection from not only
crash but also program bugs and achieve high performance
and scalability in tandem. In the rest, we will first discuss
the problems in existing persistent memory allocator (§2).
We then present our design (§3) and evaluation results (§4).

2 The Case of PMDK Memory Allocator
Heap Metadata Design. The PMDK persistent memory al-
locator, libpmemobj [5], manages its metadata in three differ-
ent places. First, libpmemobj manages allocation bitmap and
memory block headers on NVMM. They represent allocation
state (e.g., free or allocated, allocation size) and protected
by undo logging. Next, for performance libpmemobj stores
frequently accessed metadata on DRAM: arena structure
and free-list for small-size allocation and a global AVL tree
for large-size allocation. Lastly, it adopts in-place metadata
layout storing allocation metadata (e.g., allocation size) right
before the allocated address for fast access. However, such
metadata management in PMDK is vulnerable to program

bugs and a centralized metadata (e.g., the global AVL tree)
often become a scalability bottleneck. Below we discuss the
critical issues in PMDK allocator.

(1) In-place Metadata Corruption. When a program bug
(e.g., heap overflow) corrupts the in-place metadata, espe-
cially the size field, libpmemobj may free incorrect size
of NVMM space. It may result in allocating the already-
allocated space or failing to free the entire allocated memory.
Duplicated allocation causes silent yet permanent user data
corruption and failure in free causes permanent memory
leak.

(2) Direct Metadata Corruption. Moreover, the allocator
metadata on NVMM (e.g., bitmap and memory block head-
ers) is mapped to program’s virtual address space with a
read-writable permission. Hence, a software bug can corrupt
the metadata directly resulting in an irrecoverable NVMM
heap.

(3) Volatile Metadata Corruption. Similarly, metadata on
DRAM (e.g., free-list, the global AVL tree) is also in the
same virtual address space with a read-writable permission.
The DRAM metadata corruption results in an incorrect mem-
ory allocation/free which can corrupt NVMM heap metadata.

(4) Non-scalable Performance. We found two main bot-
tleneck in libpmemobj upon concurrent allocation and free.
First one is the global AVL tree used for managing large-
size free blocks in NVMM can be the source of contention
because it is protected by a global lock. In addition, when
libpmemobj frees a small-size memory, it turns off a bit in
the bitmap but does not immediately put the freed space to
the free-list in DRAM. When the free-list becomes empty,
libpmemobj re-build the free-list by re-scanning the metadata
on NVMM. The allocation will be halt during the re-building
process so it becomes a bottleneck in allocation/free-heavy
programs.

3 Overview of POSEIDON Architecture
We design POSEIDON to provide complete heap metadata
protection without any performance degradation. We illus-
trated the overall architecture of POSEIDON in Figure 1 and
describe the key design features in the rest.

(1) Per-CPU Sub-Heaps. A POSEIDON heap consists of
multiple per-CPU sub-heaps, and a superblock maintains
the list of sub-heaps. A sub-heap maintains its own logs for
crash consistency, buddy list for allocation, information of
each memory block, and its lock for synchronization. Our
per-CPU design not only reduces contention among multi-
ple threads but also guarantees allocated memory is always
NUMA-local. It allows multiple NVMM controllers on dif-
ferent NUMA domains to be used, fully utilizing NVMM

1

NVMM metadata
Superblock

Sub-heap
info

NVMM user data

Per-CPU
sub-heap
metadata

Micro log

Buddy list
Memblock
hash table

offset
size

status

prev_mblk
next_mblk

Memblock
information

Memblock
array next_free

Per-CPU
sub-heap
user data

User data

Read-writable
region

MPK-protected region
(read-only or read-writable permission)

...

Undo log

...

Lock

Undo log

Lock

Figure 1: Heap layout of POSEIDON persistent memory allocator.

bandwidth.
(2) Fully Segregated Metadata Layout. POSEIDON com-
pletely segregates heap metadata region and user-data re-
gion. Superblock and per-CPU sub-heap metadata exist as a
header, logically placed at the beginning of the POSEIDON
persistent heap. The rest of the area is used for the user-data
region, where a program actually accesses its allocated per-
sistent objects. Due to the fully segregated metadata layout,
POSEIDON is able to prevent metadata corruption due to
heap over-/under-writes by maintaining separate memory ac-
cess permissions for both metadata and user-data regions. We
next explain how to manage access permission in POSEIDON
efficiently.
(3) Metadata Protection with Intel MPK. POSEIDON
uses Intel Memory Protection Keys (MPK) [8] to efficiently
change access permission of the metadata region for each
thread. By default, a POSEIDON metadata region is not given
write permission. Only during an allocation/free operation,
POSEIDON temporarily grants write permission for the meta-
data region. Moreover, the MPK permission change is per-
thread and fast taking around only 23 CPU cycles. Thus, the
write permission is given solely to the thread executing the
operation and reverts it back to read-only at the end of the
operation. This design entirely prevents metadata corruption
from program bugs, which has not been accomplished by
any persistent memory allocator. Note that applying MPK
protection to allocators using in-place metadata design (e.g.,
PMDK allocator) is not feasible because MPK protection is
per-page.
(4) Metadata Management Using Hash Table.
POSEIDON uses a hash table (using an address as a
key) to access memory block information in constant time.
The hash table in POSEIDON also ensures the APIs cannot
maliciously corrupt the metadata. Prior to any memory
request (malloc/free), POSEIDON uses the hash table to
validate the memory address and its status to prevent
metadata corruption due to double-frees and invalid-free
bugs.
(5) Crash Consistency. POSEIDON uses undo logging to
ensure the failure-atomicity of the metadata update from the
program/system crashes. In addition, POSEIDON uses micro

0

5

10

15

20

25

0 16 32 48 64

M
op

s/
se

c

threads

(a) Larson benchmark

Makalu

0

1

2

3

0 16 32 48 64
0
1
2
3
4
5
6
7
8

0 16 32 48 64
threads

(b) YCSB Load A

POSEIDON

threads

(c) YCSB Workload A

PMDK

Figure 2: Performace of persistent memory allocator.

logging, which keeps the history of memory allocations to
prevent memory leaks for transactional memory allocation.

4 Evaluation
We evaluate the performance of POSEIDON using a 2-
socket server equipped with 768GB DRAM, and 3.0TB
(12×256GB) of Intel Optane DC Persistent Memory
(DCPMM). We use two benchmarks, YCSB benchmark and
Larson benchmark.
Larson Benchmark. The Larson benchmark [2] simulates
a server memory allocation pattern. Larson benchmark gen-
erates N objects of allocation/deallocation while varying the
size of objects randomly. We run the Larson benchmark for
10 seconds with a varying number of threads, as in the PAl-
locator [7]. As Figure 2(a) shows, POSEIDON significantly
outperforms other persistent memory allocators mainly be-
cause of per-CPU sub-heap design.
YCSB. The YCSB benchmark [3] simulates a key-value
store scenario, performing multiple, concurrent, cross-thread
allocations and deallocations in a persistent index structure
as the workloads. We modified BZTree [1] to evaluate the
performance of PM allocators as previous study [6] shows
that BzTree suffers from PM allocation overhead. We ran
experiments using two workloads, LOAD A (100% insert,
allocation-heavy workloads) and Workload A (50% update
and 50% read, allocation-less workloads). As Figure 2(b)
shows, POSEIDON shows better multi-core scalability than
PMDK in the allocation-heavy workloads due to its per-CPU
sub heap design and hash table based metadata management.
Also, POSEIDON shows better performance in the Workload
A, as shown in Figure 2(c). Because POSEIDON can fully
utilize the bandwidth of Intel Optane DCPMM in different
sockets. For more information, refer to our full paper [4].

References
[1] Arulraj et al. Bztree: A High-performance Latch-free Range Index for

Non-volatile Memory. VLDB 2018.
[2] Berger et al. Hoard: A Scalable Memory Allocator for Multithreaded

Applications.ASPLOS 2000.
[3] Cooper et al. Benchmarking cloud serving systems with YCSB. SOCC

2010
[4] Demeri et al. Poseidon: Safe, fast and scalable persistent memory

allocator. MIDDLEWARE 2020.
[5] pmdk-alloc URL http://pmem.io/pmdk/manpages/linux/v1.5/

libpmemobj/pmemobj_alloc.3.
[6] Lersch et al. Evaluating persistent memory range indexes. VLDB

2020.
[7] Oukid et al. Memory Management Techniques for Large-scale

Persistent-main-memory Systems. VLDB 2017.
[8] Park et al. Libmpk: Software Abstraction for Intel Memory Protection

Keys (Intel MPK). USENIX ATC 2019

2

http://pmem.io/pmdk/manpages/linux/v1.5/libpmemobj/pmemobj_alloc.3
http://pmem.io/pmdk/manpages/linux/v1.5/libpmemobj/pmemobj_alloc.3

