# **PRISM:** Optimizing Key-Value Store for Modern Heterogeneous Storage Devices

Yongju Song, Wook-Hee Kim, Sumit Kumar Monga,

Changwoo Min, and Young Ik Eom







A method for assigning different categories of data to *various types of storage media* to *reduce overall storage costs*.



A method for assigning different categories of data to *various types of storage media* to *reduce overall storage costs*.



A method for assigning different categories of data to *various types of storage media* to *reduce overall storage costs*.



A method for assigning different categories of data to *various types of storage media* to *reduce overall storage costs*.



|           | Capacity                   | Cost | Performance |                        |                         |
|-----------|----------------------------|------|-------------|------------------------|-------------------------|
| Туре      | Model                      | GB   | \$/TB       | Read Latency<br>(usec) | Write Latency<br>(usec) |
| DRAM      | SK Hynix DRAM w/DDR4       | 16   | 5,427       | 0.08                   | 0.08                    |
| NVM       | Intel Optane DCPMM w/DDR-T | 128  | 4,096       | 0.30                   | 0.09                    |
| NVM SSD   | Intel Optane 905P w/PCIe 3 | 960  | 1,024       | 10                     | 10                      |
| Flash SSD | Samsung 980 Pro w/PCIe 4   | 1024 | 150         | 50                     | 20                      |
| Flash SSD | Samsung 980 w/PCIe 3       | 1024 | 100         | 60                     | 20                      |

|                     |            |           | Capacity                   | Cost  | Performance            |                         |      |    |
|---------------------|------------|-----------|----------------------------|-------|------------------------|-------------------------|------|----|
|                     | Type Model |           | GB                         | \$/TB | Read Latency<br>(usec) | Write Latency<br>(usec) |      |    |
| Performance         |            | DRAM      | SK Hynix DRAM w/DDR4       | 16    | 5,427                  | 0.08                    | 0.08 |    |
| devices             |            | NVM       | Intel Optane DCPMM w/DDR-T | 128   | 4,096                  | 0.30                    | 0.09 |    |
|                     | Z          | NVM SSD   | Intel Optane 905P w/PCIe 3 | 960   | 1,024                  | 10                      | 10   |    |
| Capacity<br>devices | ļ          | Flash SSD | Samsung 980 Pro w/PCIe 4   | 1024  | 150                    | 50                      | 20   | := |
|                     | L.         | Flash SSD | Samsung 980 w/PCIe 3       | 1024  | 100                    | 60                      | 20   |    |



| V-NAND SSD       |     | SAMSUNG | : ] . |
|------------------|-----|---------|-------|
| 980 PRO          |     |         | 181   |
| PCIe 4.0 NVMe M2 | 1TB |         | 10.00 |

| / |   |   |
|---|---|---|
| V | V | V |

| Specification |                            | Capacity | Cost  | Performance            |                         |                   |                    | Endurance         |
|---------------|----------------------------|----------|-------|------------------------|-------------------------|-------------------|--------------------|-------------------|
| Туре          | Model                      | GB       | \$/TB | Read Latency<br>(usec) | Write Latency<br>(usec) | Read BW<br>(GB/s) | Write BW<br>(GB/s) | Warranty<br>(PBW) |
| DRAM          | SK Hynix DRAM w/DDR4       | 16       | 5,427 | 0.08                   | 0.08                    | 15                | 15                 | ∞                 |
| NVM           | Intel Optane DCPMM w/DDR-T | 128      | 4,096 | 0.30                   | 0.09                    | 6.8               | 1.9                | 292               |
| NVM SSD       | Intel Optane 905P w/PCIe 3 | 960      | 1,024 | 10                     | 10                      | 2.6               | 2.2                | 17.52             |
| Flash SSD     | Samsung 980 Pro w/PCIe 4   | 1024     | 150   | 50                     | 20                      | 7                 | 5                  | 0.6               |
| Flash SSD     | Samsung 980 w/PCIe 3       | 1024     | 100   | 60                     | 20                      | 3.5               | 3                  | 0.6               |

| Specification |                            | Capacity | Cost  | Performance            |                         |                   |                    | Endurance         |
|---------------|----------------------------|----------|-------|------------------------|-------------------------|-------------------|--------------------|-------------------|
| Туре          | Model                      | GB       | \$/TB | Read Latency<br>(usec) | Write Latency<br>(usec) | Read BW<br>(GB/s) | Write BW<br>(GB/s) | Warranty<br>(PBW) |
| DRAM          | SK Hynix DRAM w/DDR4       | 16       | 5,427 | 0.08                   | 0.08                    | 15                | 15                 | ∞                 |
| NVM           | Intel Optane DCPMM w/DDR-T | 128      | 4,096 | 0.30                   | 0.09                    | 6.8               | 1.9                | 292               |
| NVM SSD       | Intel Optane 905P w/PCIe 3 | 960      | 1,024 | 10                     | 10                      | 2.6               | 2.2                | 17.52             |
| Flash SSD     | Samsung 980 Pro w/PCIe 4   | 1024     | 150   | 50                     | 20                      | 7                 | 5                  | 0.6               |
| Flash SSD     | Samsung 980 w/PCIe 3       | 1024     | 100   | 60                     | 20                      | 3.5               | 3                  | 0.6               |

There is *No Clear Separation* between performance-/capacity- devices.

"The Storage Hierarchy is *Becoming a Jungle*." [CIDR'21, Dong Xie]

"The Storage Hierarchy is Not a Hierarchy." [FAST'21, Remzi H. Arpaci-Dusseau]

 $\checkmark$   $\checkmark$   $\checkmark$ 

Placing hot data on NVM

• System can leverage the low latency of NVM but *suffer from its limited bandwidth*.



Placing hot data on NVM

• System can leverage the low latency of NVM but *suffer from its limited bandwidth*.

Traversing data layer by layer for handling read requests

- Inefficient traversal leads to *wasting CPU cycles*.
- Overall performance may be *bounded to the device with the lowest performance*.



Placing hot data on NVM

• System can leverage the low latency of NVM but suffer from its limited bandwidth.

Traversing data layer by layer for handling read requests

- Inefficient traversal leads to wasting CPU cycles.
- Overall performance may be bounded to the device with the lowest performance.

How should we design a Heterogeneous Storage System in the Modern Storage Landscape?



### **Design Goals of Prism**

Drawing the full potential of heterogeneous storage devices.

Minimizing the overhead of software stack for scalability

**Providing a high level of crash consistency & concurrency** 

## **Overview of PRISM**



### **Overview of** *PRISM***: Insert (k1, v1)**



# **Overview of** *PRISM***: Insert (k1, v1)**



#### **Asynchronous Bandwidth-Optimized WRITE**





#### **Asynchronous Bandwidth-Optimized WRITE**



## **Design Overview of PRISM: Lookup(k4)**



# Design Overview of PRISM: Lookup(k4)

Adjust the IO batch size for SSD reads according to thread concurrency Combine reads from multiple threads to a single read operation

Aggressively utilizing the bandwidth and hide latency of SSD



#### **Opportunistic Thread Combining for READ**



Value Storage (io\_uring)

#### **Opportunistic Thread Combining for READ**



#### **Cross-media Crash Consistency**



# **Cross-media Crash Consistency**

#### **Components are scattered across multiple heterogeneous devices**

• Lightweight crash consistency with Forward & Backward pointers



#### **Crash Consistent Update of Values with HSIT**



#### **Crash Consistent Update of Values with HSIT**



#### **Crash Consistent Update of Values with HSIT**



# **Experimental Setup**

#### Hardware environment

- Two-socket Intel Xeon machine
- Each socket: 20 CPU cores,
  Six 128GB Intel Optane DIMMSs, and 96GB DRAM
- Eight Samsung 980 PRO 1TB SSDs with two NVMe RAID Controllers HighPoint SSD7103

#### Competitors

- KVell: DRAM-SSD with up to 64 batched I/Os [SOSP'21]
- MatrixKV: DRAM-NVM-SSD [ATC'20]
- Allocated their hardware resources at the same cost levels





## **Performance Comparison on YCSB**

WRITE: Does not require level-compaction & Per-thread write buffer READ: No need for traversing multiple levels & Efficient KV item caching



# **Opportunistic Thread Combining**

Prism opportunistically adjust the IO batch size for read operations according to thread concurrency.



# In the paper...

Performance under other workloads

#### Performance impact of ..

- Number of SSDs
- Size of PWB/SVC
- Write amplification
- Garbage collection in Value Storage
- Individual techniques

Size of NVM space

Recovery



## Conclusion

We answered the question:

How should we design a Heterogeneous Storage System in the Modern Storage Landscape?

- Synergistic Five Components
- Asynchronous Bandwidth-Optimized WRITE
- Opportunistic Thread Combining
- Cross-media Crash Consistency & Concurrency Control using Forward & Backward Pointers

# **PRISM:** Optimizing Key-Value Store for Modern Heterogeneous Storage Devices

Yongju Song, Wook-Hee Kim, Sumit Kumar Monga,

Changwoo Min, and Young Ik Eom

