PrRISM: Optimizing Key-Value Store for
Modern Heterogeneous Storage Devices

Yongju Song, Wook-Hee Kim, Sumit Kumar Monga,

Changwoo Min, and Young Ik Eom

Heterogeneous Storage Systems

A method for assigning different categories of data
to various types of storage media to reduce overall storage costs.

+ fod

ol @

o
o “-; Performance
§ S device
| ©
| &
ol o

v / Capacity device \

@O g

Old-fashioned

Heterogeneous Storage Systems

A method for assigning different categories of data
to various types of storage media to reduce overall storage costs.

A
1 S DRAM
" Performance -
device T
v R / Capacity device ¢ =
@0 - .

Old-fashioned

Performance
Capacity-cost

Heterogeneous Storage Systems

A method for assigning different categories of data
to various types of storage media to reduce overall storage costs.

i fod

ol @

o
5 “-; Performance
§ S device
t| 8 L
| & .
al|l o -

v 5 / Capacity device \

@O .

Old-fashioned Modern

Heterogeneous Storage Systems

A method for assigning different categories of data
to various types of storage media to reduce overall storage costs.

i fod

1k (2
o

5 “-; Performance

§ S device

2| g ,

al| o .
\ 4 5 / Capacity device

0 .

Old-fashioned Modern

Evolution of Storage Heterogeneity

Specification Capacity | Cost Performance
Type Mode G | 3o | Rend Latency Wite Latency
DRAM SK Hynix DRAM w/DDR4 16 5,427 0.08 0.08
NVM Intel Optane DCPMM w/DDR-T 128 4,096 0.30 0.09
NVM SSD Intel Optane 905P w/PCle 3 960 1,024 10 10
Flash SSD Samsung 980 Pro w/PCle 4 1024 150 50 20
Flash SSD Samsung 980 w/PCle 3 1024 100 60 20

Evolution of Storage Heterogeneity

Specification Capacity | Cost Performance
Read Latency Write Latency
Type Model GB S/TB (usec) (usec)
(DRAM SK Hynix DRAM w/DDR4 16 5,427 0.08 0.08
Performance :
devices NVM Intel Optane DCPMM w/DDR-T_ 0.30 0.09 S N
> NVMSSD Intel Optane 905P w/PCle 3 960 1,024 10 10
Capacity { FlashSSD Samsung 980 Pro w/PCle 4 1024 150 _ ‘ oz
devices == .
Flash SSD Samsung 980 w/PCle 3 1024 100
\

Evolution of Storage Heterogeneity
v v v

Specification Capacity | Cost Performance Endurance
Read Latency Write Latency Read BW Write BW | Warranty
B TB
Type e G o/ (usec) (usec) (GB/s) (GB/s) (PBW)
DRAM SK Hynix DRAM w/DDR4 16 5,427 0.08 0.08 15 15 oo

NVM Intel Optane DCPMM w/DDR-T _ 0.30 0.09 6.8 - 292
NVM SSD Intel Optane 905P w/PCle 3 960 1,024 | 10 10 -- 17.52
Flash SSD Samsung 980 Pro w/PCle 4 1024 150 _— 7 5

Evolution of Storage Heterogeneity

v v v

Specification Capacity | Cost Performance Endurance
o | sy | Pty Wite sy s B W oW | W
DRAM SK Hynix DRAM w/DDR4 16 5,427 0.08 0.08 15 15 oo
NVM Intel Optane DCPMM w/DDR-T 128 4,096 0.30 0.09 6.8 1.9 292
NVM SSD Intel Optane 905P w/PCle 3 960 1,024 10 10 2.6 2.2 17.52
Flash SSD Samsung 980 Pro w/PCle 4 1024 150 50 20 7 5 0.6
Flash SSD Samsung 980 w/PCle 3 1024 100 60 20 3.5 3 0.6

There is No Clear Separation between performance-/capacity- devices.

“The Storage Hierarchy is Becoming a Jungle.” cior21, ong Xie]

“The Storage Hierarchy is Not a Hierarchy.” (rast21, Remzi H. Arpaci-Dusseau]

Today’s Storage Hierarchy

10

Today’s Storage Hierarchy

Placing hot data on NVM
e System can leverage the low latency of NVM but suffer from its limited bandwidth.

WRITE ~
DRAM C Buffer
FIu?I)
NVM C &
Flush
SSD (%
11

Today’s Storage Hierarchy

Placing hot data on NVM

e System can leverage the low latency of NVM but suffer from its limited bandwidth.

Traversing data layer by layer for handling read requests
* Inefficient traversal leads to wasting CPU cycles.
* Overall performance may be bounded to the device with the lowest performance.

WRITE —~ READ ~
DRAM C Buffer)3 (Cache)
Flush T~ ‘
VM (“ (D Wasting
Flush W y CPU cycles
SSD C % C
12

g
How should we design a Heterogeneous Storage System

_

in the Modern Storage Landscape?

~

J

Design Goals of Prism
Drawing the full potential of heterogeneous storage devices.
Minimizing the overhead of software stack for scalability

Providing a high level of crash consistency & concurrency

14

Overview of PRISM

l] DRAM
Persistent — Y
(D—@D—@ T
Heterogeneous
Storage Index Table
(HSIT)

| vl -‘ Tvalv .‘ I... v7
Persistent Write Buffer Scan-aware Value Cache

Value St
(PWB) alue Storage (SVC)

Overview of PRrism: Insert (k1, v1)

Persistent
Key Index

Heterogeneous

(3]

l] DRAM
l] NVM
() ssb

Storage Index Table

(HSIT)

.../

(2
/
ol [l

N

\

Persistent Write Buffer
(PWB)

4

/L v

V7 see

Value Storage

16

Overview of Prism: Insert (k1, v1)

Background Reclamation of PWB
* Preventing application threads from blocking

Asynchronous I/0 batching
* Achieving high bandwidth of SSD

Asynchronous Bandwidth-Optimized WRITE

(‘)

(1 vi\" o /L e -‘

Persistent Write Buffer
(PWB)

Value Storage

Asynchronous Bandwidth-Optimized WRITE

Persistent Watermark (50%) % Application Thread (from Index to PWB)
Write Buffer
(PWB) vl [v27] v3 |v2

Per-value Metadata Per-value Metadata

% Background Reclamation (from PWB to Value Storage)

Free Chunk N (512KB)

Value (\ - ST
_-” ackward ptr
Storage vi 2 [v3 | _.-- P
- Value size
Chunk1 | | per-value
Metadata | _____

Append-only writes

Asynchronous Bandwidth-Optimized WRITE

Persistent Watermark (50%) % Application Thread (from Index to PWB)
Write Buffer vO
(PWB) vd | v/
Per-value Metadata Per-value Metadata
\ J
Y
vl [v2''] v3
% Background Reclamation (from PWB to Value Storage)
Metadata
v" Free Chunk N (512KB)
Value (A \ - ST
e ackward ptr
Storage vi 2 [v3 | _.-- P
- Value size
Chunk1 | | per-value
Metadata | _____

Append-only writes

Design Overview of Prism: Lookup(k4)

Persistent
Key Index

Heterogeneous

Storage Index Table

(HSIT)

vl

Vl“ oes

|

Persistent Write Buffer
(PWB)

1

| vd

V7 see

Value Storage

NVM
SSD
DRAM

. V7 e

Scan-aware Value Cache

(svC)

20

Design Overview of Prism: Lookup(k4)

Adjust the 10 batch size for SSD reads according to thread concurrency

Combine reads from multiple threads to a single read operation
» Aggressively utilizing the bandwidth and hide latency of SSD

SE—
9/ Opportunistic
Thread Combining
SRS for READ
Value Storage

- J

Opportunistic Thread Combining for READ

TCQ tail =

\‘ ~~~~~~~~~~
Thread T \‘\\
Combining % Leader R | e :
Queue Thread 1 [Threale 2’] [Threa?l N'] : ThreacflM’ i
(TCQ) [READ ‘v1’] READ v2 el __READ VS’

Value Storage
(io_uring)

22

Opportunistic Thread Combining for READ

TCQ tail ~——====0 Atomic swap
Vo T _
Thread ||| F \\\
Combining v Leader | e :
(TcQ) READ ‘v1’ DAL Ve ntal Vo L B0 va__
\)

Coalesce and
submit requests

Value Storage

Notify request
(io_uring)

completion

Submission Completion

Queue | > Queue

(5Q) (CQ)

Cross-media Crash Consistency

Persistent
Key Index

Heterogeneous

Storage Index Table

(HSIT)

vl

Vl“ oes

|

Persistent Write Buffer
(PWB)

T

| va

V7 see

Value Storage

NVM
SSD
DRAM

S

V7 e

Scan-aware Value Cache

(svC)

24

Cross-media Crash Consistency

Components are scattered across multiple heterogeneous devices
* Lightweight crash consistency with Forward & Backward pointers

Cross-media Crash Consistency

(‘)
Heterogeneous Y -

Storage Index Table

N I .. .01 h —_

Crash Consistent Update of Values with HSIT

i Leaf node of
INSERT {k2, v2} i @ Persistent
E Key Index
|
i |2]2l8| HSIT entry
k2 i
i
s i l Foward pointer
o 1
-9 O :
S !
’ o : 4
/ } : : Backward pointer
[} : |
o o a
' / i Obsolete value
2 i |
PWB #0 PWB #1 i Updated value
1

26

Crash Consistent Update of Values with HSIT

i Leaf node of
INSERT {k2, v2} i @ Persistent
E Key Index
|
i |2]2l8| HSIT entry
k2 i
i
s i l Foward pointer
o 1
-9 O :
S !
’ o : 4
/ } : : Backward pointer
[} : |
o o a
' / i Obsolete value
2 i |
PWB #0 PWB #1 i Updated value
1

27

Crash Consistent Update of Values with HSIT

. . | Leaf node of
UPDATE {k2, v2} to {k2, v2'} UPDATE {k3, v3} to {k3, v3'} i @ bersistent
i Key Index

|

i |2]2|$] HSITentry
k2 k3 !
i

s i l Foward pointer
= i
/,,/' g \ i
/ o 1 *
/ A : l Backward pointer
/ / 1 : :
1’ ‘- 1
(] 8 i
AN i Obsolete value

\\N-:////:s :
257 |
i
i

PWB #0 Value Storage #1 Updated value

28

Experimental Setup

Hardware environment

e Two-socket Intel Xeon machine

e Each socket: 20 CPU cores,
Six 128GB Intel Optane DIMMSs, and 96GB DRAM

* Eight Samsung 980 PRO 1TB SSDs
with two NVMe RAID Controllers HighPoint SSD7103

Competitors
* KVell: DRAM-SSD with up to 64 batched |/Os [sosp’21]
* MatrixKV: DRAM-NVM-SSD [ATC’20]
* Allocated their hardware resources at the same cost levels

29

Performance Comparison on YCSB

WRITE: Does not require level-compaction & Per-thread write buffer

READ: No need for traversing multiple levels & Efficient KV item caching

8 _ Prism 1 MatrixKV 1 25()
KVell RocksDB-NVM 1w

i

LOAD A B C D

200

@)\
!

150

N
I

Mops/sec
Kops/sec

[\
I

)

30

Opportunistic Thread Combining

Prism opportunistically adjust the 10 batch size
for read operations according to thread concurrency.

8 — 300

Thread Combining (TC) mmm) TC-Avg. =f=—
Time-out Async. [0 (TA) mm 250 TC-50% =)=
6 — . TC-99% - -
s § 200
= >
z 4| g 150
= Q
= 3100
2 |
50
0 0

TA-Avg. -[4
TA-50% —-
TA-99% -0~

1 2 4 8 16 32 64 1 2 4 3 16 32 64

Queue Depth Queue Depth

31

In the paper...

Performance under other workloads

Performance impact of ..
Number of SSDs

Size of PWB/SVC

Write amplification

Garbage collection in Value Storage

Individual techniques
Size of NVM space

Recovery

Paasuw: Optimizing Key-Value Store for Modern Heterageneous Storage Devices

Quee e Qe Do
: Impact of Prisw's opportunistic thread combin-
ing for optimized read with varying queue depth.

Zitan ot STV i ot 2R
Figure 12: Write amplification to SSD with varying data
skewness.

workloads. We also investigate performance trends of LSM-based
key-value stores that adopt a hierarchical structure. They show
better performance as data skewness increases, as shown in F
ure 9. This performance gain comes from the increased chance of
accessing data in the memtable or their internal block cache within
the memory layer. KVell's throughput drops as skewness increases
load imbalance and creates a few hot spots. Hence, some worker
threads are overloaded and become the performance bottleneck un-

der skewed data access. This load imbalance is an inherent problem
of partitioning-based architectures [17, 63)

Opportunistic thread combining for read. We evaluate the
effectiveness of our thread combining technique using YCSB Work-
load C while varying the queue depth (QD, the coalescing limit).
Figure 11 presents the throughput and latency as QD varies in
two different settings; One is using our thread combining tech-
nique (§5.3, abbreviated to TC) and another is using timeout-based

asynchronous 10 processing (abbreviated to TA). TA waits for sub-
sequent read requests for a certain period (100 in this evaluation)
and submits the requests to storage if there is no more incom-
ing request. The experimental results show that the performance
gap between TC and TA gets larger as QD increases. Also, thread
combining with QD of 64 delivers up to 11.7x higher throughput
and 1.9% lower response time than when using a single QD. This
confirms Pruss’s thread combining can handle 1O requests from
multiple threads at once with high SSD 10 utilization.

Write amplification (WAF). We measure the write amplification
in SSDs for updating a 100GB da
value pairs (512B and 1KB). Figure 12 shows that Prisst has the

aset with variable sizes of key-

lowest SSD-level write amplification as PWB absorbs small 10s and
merges them into large chunk-sized 105 to the SSD. MatrixKV has
high write amplification, up to 162x of Priss, due to compaction
operations of the LSM-tree. KVell also shows high write amplifica
tion, up to 13X of Priss, because KVell performs 10 operations in
page granularity. As data skewness increases, write amplification

598

ASPLOS ‘21 March 25-20, 2021, Vancouver, BC. Canada

) g et X

Figure 14: Latency (ss) with varying the number of SSDs.

%:—:;/ [=k
T |’ s ;‘f

e Coche Sine (G

Figure 15: Performance impact of varying PWB/SVC sizes.

decreases for Prisw and KVell due to increased opportunities to
coalesce 10 requests for the same data. In contrast, MatrixKV shows

higher write amplification as the skewness increases due to the
compaction in LSM-tree.

Number of SSDs. We measured the throughput of Prisw and
KVell with w ve Workload A and read Work
load C while varying the number of aggregated SSDs in F

In the write-intensive Workload A, Priss provides higher through
put than KVell irrelevant to the number of SSD attached, thanks
to Prasw’s PWB and scalable centralized components. Even in the
read-intensive Workload C, Prism delivers better throughput and
latency. Only in the case of the number of SSDs being less than
4, KVell provides higher throughput than Prisut as shown in Fig

ure 13(b). This is because KVell employs special threads that inject
10 requests into the queue to batch read requests more aggres.
sively. Although, KVell offers better read throughput in the case of

a small number of SSDs, note that Prrst which exploits opportunis
tic thread combining for handling read requests, always provides
lower latencies than KVell, as shown in Figure 14

Size of Persistent Write Buffer. The size of PWB is closely re
lated to the write performance of Prisw as every value is written
first to the PWB. As shown in Figure 15(a), in LOAD warkload,

a0 Young Ik Eom

c b
si3s.08

Jzed to 0.99)

flion KV pairs

Jomparison with
bie cache, Prism

bput up to 2.5
Jure 8. Our SVC

loads

also conducted
fids containing a
As mentioned
ell, which con
Jrdware costs for
er performance
pacy of our SVC
tributors on im-
al results show
his workload

workloads, we
frorkloads from
Joad tends to be
fnd 2% Scans. In

pce

that real-world
re 9 shows the

ks with varying
fized to the per
Jrisw effectively
VB and SVC, re-
fscs in all YCSB

and Young Ik Eom

froughput by up
Jlerated scan op-
bt of nearly 10%

Jead of our NVM
00 million key
5.4 GB of NVM

kg the large ca

pe in Prism and
GB of a dataset.
Pout 6.9 seconds
nsists of DRAM
e entire SSD, so
J& on the perfor.

It are helpful for
Jvides higher ca
ked to SSD, and
between Prisy
onstrate the use-
s conventional
las PWB absorbs
lower SSD WAF
Jtend the span of
thout scanning
ristics of NVM,

jhan Kvell

bther emerging
s more diverse
femote flash for
and low capac
b access latency
) Samsung’s re
faddressable and
o, respectively
t out to answer
jencous storage
Jable storage and
pes and software
all. we present
1, crash consis:
bn of the diverse

Jodern heteroge-
Jsing diversity of
b storage device
). At the center
In 2 low latency
fice that enables
Jnaintains multi
Jgencous storage

32

Conclusion

We answered the question:

How should we design a Heterogeneous Storage System
in the Modern Storage Landscape?

* Synergistic Five Components

* Asynchronous Bandwidth-Optimized WRITE

* Opportunistic Thread Combining

* Cross-media Crash Consistency & Concurrency Control
using Forward & Backward Pointers

33

PrRISM: Optimizing Key-Value Store for
Modern Heterogeneous Storage Devices

Yongju Song, Wook-Hee Kim, Sumit Kumar Monga,

Changwoo Min, and Young lk Eom

Paper

	슬라이드 1
	슬라이드 2: Heterogeneous Storage Systems
	슬라이드 3: Heterogeneous Storage Systems
	슬라이드 4: Heterogeneous Storage Systems
	슬라이드 5: Heterogeneous Storage Systems
	슬라이드 6: Evolution of Storage Heterogeneity
	슬라이드 7: Evolution of Storage Heterogeneity
	슬라이드 8: Evolution of Storage Heterogeneity
	슬라이드 9: Evolution of Storage Heterogeneity
	슬라이드 10: Today’s Storage Hierarchy
	슬라이드 11: Today’s Storage Hierarchy
	슬라이드 12: Today’s Storage Hierarchy
	슬라이드 13: Today’s Storage Hierarchy
	슬라이드 14: Design Goals of Prism
	슬라이드 15: Overview of Prism
	슬라이드 16: Overview of Prism: Insert (k1, v1)
	슬라이드 17: Overview of Prism: Insert (k1, v1)
	슬라이드 18: Asynchronous Bandwidth-Optimized WRITE
	슬라이드 19: Asynchronous Bandwidth-Optimized WRITE
	슬라이드 20: Design Overview of Prism: Lookup(k4)
	슬라이드 21: Design Overview of Prism: Lookup(k4)
	슬라이드 22: Opportunistic Thread Combining for READ
	슬라이드 23: Opportunistic Thread Combining for READ
	슬라이드 24: Cross-media Crash Consistency
	슬라이드 25: Cross-media Crash Consistency
	슬라이드 26: Crash Consistent Update of Values with HSIT
	슬라이드 27: Crash Consistent Update of Values with HSIT
	슬라이드 28: Crash Consistent Update of Values with HSIT
	슬라이드 29: Experimental Setup
	슬라이드 30: Performance Comparison on YCSB
	슬라이드 31: Opportunistic Thread Combining
	슬라이드 32: In the paper…
	슬라이드 33: Conclusion
	슬라이드 34

