

ReplayCache: Enabling Caches for Energy Harvesting Systems

Jianping Zeng¹, Jongouk Choi¹, Xinwei Fu², Ajay Paddayuru Shreepathi³, Dongyoon Lee³, Changwoo Min², Changhee Jung¹

¹Purdue University ²Virginia Tech ³Stony Brook University

Battery is Not the Way to Go!

- Batteries are bulky
- They must be replaced

Energy Harvesting Systems (EHS)

Unreliability of Ambient Energy Sources

[Ma, HPCA'2015]

Problem of Frequently Data Loss

Timeline of program execution

: Power failure on which all volatile registers lose their data

NVP Has No Cache Due to Its Crash Consistency Issue

* We can't restart program from the exactly failure point as NVP does

ReplayCache: A Pure Software Solution to Enabling Performant Volatile Cache for EHS

* Software undo/redo logging slow down 1.6-5x

54th IEEE/ACM International Symposium

on Microarchitecture

Reason for Crash Inconsistency of Volatile Cache

54th IEEE/ACM International Symposium

on Microarchitecture

ReplayCache Solution: Replaying Unpersisted PURDUE Stores

* Recovery status after power failure happens

Store Integrity: A Property to Ensure Correct PURDUE Replaying

• Store integrity: register operands of stores must be not overwritten by following definitions

54th IEEE/ACM International Symposium

on Microarchitecture

Challenge of Guaranteeing Store Integrity

 Limited number of registers prevents store integrity

Region-Level Store Integrity and Implications PURDUE

Region level register reuse

Region level store persistence

Safe to overwrite store register across regions

Region-Level Store Persistence

Recovery Protocol

- Stores left behind failure are the root of cause
- Replaying them in the wake of failure with store integrity
- Due to limited registers, region-level store integrity is introduced, which in turn requires region-level store persistence to allow each region to use all registers.

Recovery protocol

Just Restart a Power-interrupted Region?

Region-Level Recovery Protocol

on Microarchitecture

Challenge to Generate Store-Integrity Regions

No Store Integrity with Existing Register Allocation

Assume only 3 registers
Disjoint live ranges can share the same physical register (x,z)

Register Assignment

Register-Renaming-Aware Region Partitioning PURDUE

- Store operands must not share same registers with following definitions
- Assume 3 registers

54th IEEE/ACM International Symposium

on Microarchitecture

Spilling-Store-Registers Preservation

Register Assignment

- ➢Gem5-based NVPSim modeling a single core in-order ARMv7 processor with 8kB 2-way set-associative L1 I/D cache, and 16MB ReRAM as main memory.
- LLVM-based region formation.
- ➢ Mediabench + Mibench.

Speedup over No-cache Baseline with Real Power Trace

ILP Efficiency (no power failure)

Sensitivity to Cache Size

* Office power trace

Conclusion

- A pure software design for enabling WB volatile cache with crash consistency guarantee.
- Never amplify writes.
- Comparable performance to an ideal NVSRAM cache for realistic power traces.

Thank You Q&A

Jianping Zeng @Purdue University (zeng207@purdue.edu)

This presentation and recording belong to the authors. No distribution is allowed without the authors' permission.

Normalized Energy Consumption Breakdown PURDUE

* Office power trace

Architecture of WT-VCache and WB NVCache PURDUE

Speedup over Non-cache Baseline

