
Durable Transactional Memory
Can Scale With TimeStone

R. Madhava Krishnan, Jaeho Kim*,
Ajit Mathew, Xinwei Fu, Anthony Demeri,
Changwoo Min, Sudarsun Kannan+

*

+

Executive Summary

➢ TimeStone is a highly scalable Durable Transaction Memory (DTM)

○ Goals: High scalability, performance and low write amplification

○ Technique: Hybrid DRAM-NVMM logging and MVCC

➢ A novel Hybrid DRAM-NVMM logging approach for

○ High performance and low write amplification

➢ TimeStone adopts Multi-Version Concurrency Control (MVCC) model

○ For high scalability and support multiple isolation levels

➢ Scales upto 112 cores and has write amplification <= 1

2

Talk Outline

3

➢ Motivation
➢ Overview

➢ Design

➢ Evaluation

Non-Volatile Main Memory (NVMM)

4

➢ NVMM has arrived!

➢ Storage like characteristics

○ Data persistence

○ Large capacity

➢ Memory like performance

○ ~100x faster than SSDs

○ Offers byte-addressability

Durable Transactional Memory (DTM)

➢ DTMs are software framework supporting ACID properties

➢ DTMs makes NVMM programming easier

➢ Relieves the burden on NVMM application developers

➢ There are some serious problems that needs immediate attention

5

➢ Poor Scalability

➢ High Write Amplification (up to 6x)

Review of Existing DTMs

6

➢ State-of-art DTMs focuses on reducing the crash consistency cost

○ DudeTM [ASPLOS-17]

○ Romulus [SPAA-18]

➢ To reduce the crash consistency overhead

○ DudeTM keeps logging operations out of critical path

○ Romulus maintains a backup heap to eliminate logging operations

➢ Existing DTMs incurs high Write Amplification in the course of
reducing the crash consistency cost

Review of Existing DTMs

7

➢ What is Write Amplification (WA)?
○ Additional bytes written to NVMM for each user requested bytes

➢ Why is it a serious problem?
○ Low write endurance of NVMM

○ Additional writes generates unnecessary traffic at the NVMM

➢ Hence critical path latency increases and performance drops

➢ None of the DTMs considers Many-core Scalability

Existing DTMs Are Not Scalable

8

Poor Scalability

None of the DTMs scale
beyond 16 cores!!!

Performance
Saturates Scalability is inevitable!!

16

Romulus

DudeTM

PMDK

The Reasons for Poor Scalability

➢ Poor scalability of the underlying STM

○ eg) DudeTM[ASPLOS-17]

➢ Supports only single Writer

○ eg) Romulus[SPAA-18],

○ PMDK[Intel]

9

1. Low RW Parallelism Romulus

DudeTM

PMDK

The Reasons for Poor Scalability

10

DTM Systems Write
Amplification(WA)

Libpmemobj 70x

Romulus 2x

DudeTM 4-6x

KaminoTx 2x

Mnemosyne 4-7x

➢ Additional bytes written to NVMM

➢ Crash Consistency Overhead

➢ Metadata Overhead

2. High Write Amplification

➢ High WA in the critical path
○ Impacts the system throughput

So What Do We Need Now?

➢ A scalable and high performance DTM

➢ Low write amplification Our Solution:

TimeStone

11

Talk Outline

12

➢ Motivation

➢ Overview
➢ Design

➢ Evaluation

Two Main Goals of TimeStone

13

1) Achieve High Scalability and Performance

2) Reduce Write Amplification significantly

Goal 1 - To Achieve High Scalability

➢ TimeStone adopts Multi-Version Concurrency Control (MVCC)

➢ Supports non-blocking reads and concurrent disjoint writes

➢ MVCC provides better RW parallelism

➢ Let’s illustrate how MVCC works!

14

Illustration - MVCC Programming Model

15

Node A Node B Node C Node D

CASE 1: Concurrent Readers

Reader-1 Reader-2 Reader-3 Reader-4

Timestone Supports Non-Blocking Reads

Illustration - MVCC Programming Model

16

Node A Node B Node C Node D

CASE 2: Concurrent Writers

Writer-1 Writer-2 Writer-3

Timestone Supports Disjoint Writes

Disjoint Writers
One of the Writers

Succeeds and Others Abort

Goal 1 - To Achieve High Scalability

➢ MVCC provides better RW Parallelism

17

➢ But that's not just enough for better scalability!

➢ Two reasons for poor scalability

○ Low RW Parallelism ⇒ solved by adopting MVCC

○ High Write Amplification

➢ MVCC can incur very high Write Amplification

Goal 1 - To Achieve High Scalability

18

➢ We optimize MVCC for NVMM to achieve better Scalability

○ Reduce Write Amplification

○ Asynchronous Garbage Collection (Refer Paper)

➢ MVCC for better RW parallelism

➢ Optimize MVCC for NVMM

Goal 2 - Low Write Amplification

➢ TOC logging is a multilayered hybrid DRAM-NVMM logging

○ Transient Version log in DRAM (Tlog)
■ To leverage faster DRAM for better coalescing

○ Operational log in NVMM (Olog)
■ To Guarantee Immediate Durability

○ Checkpoint log in NVMM (Clog)
■ To Guarantee Correct Recovery

➢ TOC logging is key to achieve low write amplification

19

Node A
V

update_node
(A, V

1
)

Checkpointing

WritebackTlog

Olog

Clog

Update_node (A , V3)

20

Node A
V2 Node A

V
3Writes Coalesced

Checkpoints Coalesced

update_node
(A, V

2
)

update_node
(A, V

3
)

Node A
V3

Node A
V1 Node A

V
5

Node A
V

7

Node A
V

9

DRAM

NVMM
9

“Tlog is 70% filled, I need to
free up some space!!
Let me trigger checkpointing”

“Clog is 70% filled, I need
to free up some space!!
Let me trigger Writeback”

➢ Oplog for low Crash Consistency Overhead

➢ Log coalescing for Low Metadata Overhead

Reducing Write Amplification in TimeStone

Metadata
Overhead Reduced Metadata

Overhead Reduced

Immediate Durability
with low Overhead

Talk Outline

21

➢ Motivation

➢ Overview

➢ Design
➢ Evaluation

Object Structure In TimeStone: Master Object

➢ TimeStone is an object based DTM

➢ User defined persistent structure called the master object

➢ For eg., a simple linked list

22

Master Object
A

Master Object
B

Master Object
C

Master Object
D

DRAM

NVMM

Object Structure in TimeStone: Version Object

➢ Different versions of one master object called
the Version object

23

Master Object
A

Master Object
B

Master Object
C

Master Object
D

DRAM

NVMM

Version Object A2
Version Object B2 Version Object C2 Version Object D2

Version Object A1 Version Object B1 Version Object C1 Version Object D1

Version
chain

Writes in TimeStone

24

Master Object
B

DRAM

NVMM

Update(B, B1)

Tlog

Version Object B1

OlogDurability point

Linearization point
Assign the wrt-clk Master Object B

Update(B, B1)

1

2

3

4

77

Any number of writers can simultaneously work on
the disjoint Master Objects

Dereferencing - Finding the Right Version

Master Object B

Version Object B4
wrt-clk=70

Version Object B3
wrt-clk=50

Version Object B2
wrt-clk=40

local-clk = 55

local-clk = 55

NVMM

DRAM

25

local-clk = 55

Reader

Reader

Reader
wrt-clk <= local-clk

wrt-clk >= local-clk

Any number of readers can simultaneously traverse
the version chain without being blocked

Which Version Object to
dereference?

Read the first Version Object
with wrt-clk <= local-clk

Other Interesting Features in TimeStone

➢ Mixed isolation support

➢ Asynchronous time based garbage collection

➢ More details on the design

26

Talk Outline

27

➢ Motivation

➢ Overview

➢ Design

➢ Evaluation

Evaluation Questions

➢ What is the write amplification in TimeStone?

➢ Is log coalescing beneficial?

➢ Does TimeStone scale?

➢ What is the impact on real-world workload?

28

Evaluation Settings

➢ Real NVMM server (Intel DCPMEM)
○ 1TB NVMM and 337GB DRAM

○ 2.5 GHZ 112 core Intel Cascade Lake processor

➢ Benchmarks
○ Microbenchmarks - List, Hash Table, BST
○ Application Benchmarks - Kyotocabinet and YCSB

➢ Workloads

○ Different update ratios, access patterns and data set size

➢ Compared against state-of-art DTM systems

29

Write Amplification for Write-intensive (80% Update) Hash Table

30

Write Amplification of
PMDK is 70 even for 2%
Update case

Write Amplification of
TimeStone is always <= 1

Write Coalescing in TOC Logging

31

➢ Only 7% of writes are
checkpointed from Tlog

➢ The rest are coalesced in
the Tlog

0.01%

➢ Only 0.01% of writes are
written back to master

➢ The rest are coalesced in
the Tlog and Clog

100%

16% 7%

Scalability for Read-Mostly Hash Table (2% Update)

32

TimeStone
scales linearly

TimeStone is 70x
faster than Romulus

Scalability for Write-Intensive Hash Table (80% Update)

33

TimeStone still
scales linearly

TimeStone performs 100x
faster than DudeTM

With MVCC TimeStone supports better RW parallelism than
existing DTMs and hence it Scales better

Low Write Amplification in TimeStone makes the critical path
shorter and eventually a better performance and Scalability

Real-World Application - KyotoCabinet

34

Vanilla KyotoCabinet
running on DRAM

Vanilla KyotoCabinet
running on NVMM

without Crash consistency

TimeStone enabled KyotoCabinet
scales well in addition to offering

Crash Consistency
Performs upto 3x better with
additionally supporting Crash

Consistency

Discussion

➢ Durable Transactional Memory Systems
○ Romulus[SPAA-18], DudeTM[ASPLOS-17], PMDK, Mnemosyne[ASPLOS-11]

➢ Inspired from in-memory databases
○ Ermia[SIGMOD-16], Cicada[SIGMOD-17]

➢ Also non-linearizable synchronization algorithms
○ RCU[OLS-02], RLU[SOSP-15], MV-RLU[ASPLOS-19]

➢ Future work

○ Provide memory safety and reliability in TimeStone

○ Extend TimeStone to support distributed transactions

35

Conclusion

➢ Current DTMs:

○ Do not scale beyond 16 cores

○ High write amplification

➢ TimeStone:
○ Adopts and optimizes MVCC for better multi-core Scalability

○ Proposes TOC Logging to reduce the Write Amplification

➢ Scales upto 112 cores

➢ Has Write Amplification <=1

➢ Performs Upto 100x better than the state-of-art DTMs

36

BACKUP SLIDES

R. Madhava Krishnan
 Advisor : Dr. Changwoo Min

37

Conclusion

➢ Current DTMs:

○ Do not scale beyond 16 cores

○ High write amplification

➢ TimeStone:
○ Adopts and optimizes MVCC for better multi-core Scalability

○ Proposes TOC Logging to reduce the Write Amplification

➢ Scales upto 112 cores

➢ Has Write Amplification <=1

➢ Performs Upto 100x better than the state-of-art DTMs

38

Thank You!

Problems In The Existing DTMs

39

DTM Systems Storage
overhead

Libpmemobj Minimal

Romulus Very High

DudeTM Very High

KaminoTx Very High

Mnemosyne Minimal

2x the size of
NVMM

➢ DudeTM

○ requires DRAM == NVMM

➢ Romulus, KamnioTX

○ Only half of the available NVMM is used

➢ Curtails the cost effectiveness of NVMM

High Storage Overhead

Minimal Storage Overhead in Timestone

➢ Additional storage required only for the logs

➢ All Logs in Timestone are finite (4MB)

➢ Asynchronous time based garbage collection mechanism
○ Does not become a scalability bottleneck

○ Does not block writers

○ Enables better log write coalescing

A

40

Design of Timestone

➢ Timestone follows the MVCC programming model

➢ Object organization in Timestone

➢ How writes are handled in Timestone?

➢ How reads (object dereferencing) are handled?

41

Object Structure in Timestone: Control Header

➢ Headers hold the metadata of the master

➢ Entry point to the version chain

42

Master Object
A

Master Object
B

Master Object
C

Master Object
D

DRAM

NVMM

Header A Header B Header C Header D

Version chain A Version chain B Version chain C Version chain D

Node A
V

update_node
(A, V

1
)

Checkpointing

Immediate Durability

WritebackTlog

Olog

Clog

Update_node (A , V3)

43

Node A
V2 Node A

V
3Writes Coalesced

Checkpoints Coalesced

update_node
(A, V

2
)

update_node
(A, V

3
)

Node A
V3

Node A
V1 Node A

V
5

Node A
V

7

Node A
V

9

Olog_replay upon
rebooting

DRAM

NVMM
9

“Tlog is 70% filled, I need to
free up some space!!
Let me trigger checkpointing”

“Clog is 70% filled, I need
to free up some space!!
Let me trigger Writeback”

Key idea
➢ Coalesce the log writes

➢ Writeback or checkpoint the latest updates

Looks good, But what happens if
there is a power failure

before Tlog checkpoints its updates?

3 Update_node (A , V3)

Implementation

➢ Core library in C

➢ About 7000 LOC

➢ An additional C++ wrapper to hide the concurrency control and crash

consistency.

➢ NVMM friendly design pattern

○ Logging writes are one sequential write + p-barrier

44

Mixed Isolation in Timestone

➢ Timestone supports different isolation levels on the same instance of the

data structure

➢ By default it supports serializable SI

➢ Timestone supports stricter isolation levels by having read-set validation

at the commit time

➢ Keeps track of the read set and write set if the transaction runs in a

stricter isolation level

➢ Upon read set validation failure the transaction is aborted and the

updates are not visible

45

How Timestone guarantees ACID?

➢ Atomicity
○ Upon transaction commit, updates are atomically visible

○ Upon abort, the copy does not make it to version chain

➢ Consistency
○ Both the link and data consistency as we make a complete copy of the object

➢ Isolation
○ Reader isolation using time as synchronization primitive

○ Writer isolation using try_lock

➢ Durability
○ Immediately durable after commit using the oplog.

46

Recovery Design in Timestone

➢ Tightly Coupled with our logging design

➢ Completely reclaim and destroy all the logs upon safe termination

➢ Upon starting Timestone, check if the nvlog heap is consistent

➢ If not trigger the recovery

➢ Recovery is essentially a two step process

○ Replay Clog to set the master object in a consistent state

○ Replay Olog to reach to the latest point before the crash occurred

47

Recovery Design in Timestone

➢ Oplog replay executed in the order of start-ts and commits in the order

of commit-ts

➢ Starts-ts order ensures similar view to that of live transaction

➢ Commit-ts order brings application to the last consistent state observed

➢ Using oplog reduces the NVM footprint.

➢ We achieve a deterministic and no-loss recovery.

48

Scalable Garbage Collection

➢ Memory is finite!

➢ Writers are blocked if the log resources are full

➢ A non-scalable garbage collection will directly affect the write throughput

➢ We propose a asynchronous concurrent garbage collection scheme

➢ A thread itself is responsible for reclaiming its logs

➢ Reclamation are done according to the grace period semantics

➢ Cross log coordination is established without any centralized lookup or

any dependency tracking

➢ We just use timestamps

49

➢ The Tlog and Clog are reclaimed in two different modes

○ Write back mode (when log_utilization > 75%)

○ Best effort mode (when log_utilization < 75% and > 30%)

➢ Thread checks for reclamation at the transaction boundary

➢ In write back mode the latest copy object is written back

○ All the other versions (belonging to same master) are ignored

➢ In best effort mode objects are reclaimed until the first writeback is

required
○ Stopping at the first writeback allows to coalesce updates

➢ OLog entries can be discarded after Tlog writeback

50

Per-thread
Transient
Version Log

Per-thread
Operation
Log

Per-thread
Checkpoint
Log

NVM

DRAM

Node 1 Node 2

A
Node 3

A’’ A’’’

add_node
(TS-list, A’’’)

A’’A’

TS-list

TX1

3

2

4

Update Node 2

Commit Tx1

Reclaim Transient Version Log
(Checkpointing)

Reclaim
Checkpoint Log
(writeback)

1

TX1 durable
from here

A’

add_node
(TS-list, A’’)

51

master object

P-control

control header

np-master np-latest

p-lock p-copy

Copy object

wrt-clk p-nextp-control

NVM
*np

DRAM
 *p

prev-wrt-clk next-wrt-clk

Object Structure in Timestone

52

Principles Behind the Logging Design

➢ Per-thread logs to eliminate any scalability bottleneck

➢ Longer the object stays in the log better chance of absorbing redundant

writes

➢ No two logs will have the same copy object at any given instant

➢ Effective use of QP clock boundary to decide the reclamation/writeback

candidate

➢ On-fly construction of control header for all the non-volatile logs on

DRAM

➢ NVM friendly access pattern design for nvlogs.

53

MVCC Transactional Model

➢ MVCC - Optimal design choice to achieve all features in one system

➢ Problems with MVCC
○ High version chain traversal cost

○ Global timestamp allocation bottleneck

➢ We employ a concurrent and asynchronous garbage collection scheme to

solve version lookup cost

➢ We use hardware clock (RDTSCP in x86) for timestamp allocation

➢ A reader/writer will traverse the version chain to find the right version to

dereference.

➢ The right copy is identified by timestamp lookup

54

Dereferencing - Finding the Right Version

Master Object B Header B

Copy Object B4
wrt-clk=70

Copy Object B3
wrt-clk=50

Copy Object B2
wrt-clk=40

thread-1

local-ts=45 local-ts=45

local-ts=45

local-ts=45

Checkpoint boundary

thread-2
local-ts=35

local-ts=35

local-ts=35

local-ts=35

local-ts=35

local-ts=35

head tail

Copy
Obj B1

Clog

NVMM

DRAM

55

Checkpoint Boundary

Node A
V

update_node
(A, V

1
)

Checkpointing

Immediate Durability

WritebackTlog

Olog

Clog

Update_node (A , V3)

56

Node A
V2 Node A

V
3Writes Coalesced

Checkpoints Coalesced

update_node
(A, V

2
)

update_node
(A, V

3
)

Node A
V3

Node A
V1 Node A

V
5

Node A
V

7

Node A
V

9

Olog_replay upon
rebooting

DRAM

NVMM
9

“Tlog is 70% filled, I need to
free up some space!!
Let me trigger checkpointing”

“Clog is 70% filled, I need
to free up some space!!
Let me trigger Writeback”

Key idea
➢ Coalesce the log writes

➢ Writeback or checkpoint the latest updates

Looks good, But what happens if
there is a power failure

before Tlog checkpoints its updates?

3 Update_node (A , V3)

