
Durable Transactional Memory Can Scale with TIMESTONE
R. Madhava Krishnan Jaeho Kim†* Ajit Mathew Xinwei Fu

Anthony Demeri Changwoo Min Sudarsun Kannan‡

Virginia Tech †Huawei Dresden Research Center ‡Rutgers University
1. Introduction
New emerging non-volatile main memory (NVMM) technolo-
gies, such as Intel Optane, provides persistence property along
with traditional main memory characteristics, such as byte-
addressability and low access latency. In addition, the NVMM
offers data durability and larger in-memory capacity at a sig-
nificantly lower $/GB than the traditional DRAM. Despite
NVMMs being slower in read and write latency than tradi-
tional DRAMs, they allow software to have a larger but slightly
slower in-memory capacity and almost attain free durability
of data. Nevertheless, manycore scalability is becoming an
inevitable design principle when designing NVMM software
as NVMMs are expected soon to be a part of data center scale
manycore servers.

So a competent NVMM library should provide better per-
formance and scalability, have a minimal write amplification,
be memory efficient, and have a broad-ranging applicabil-
ity. Unfortunately, none of the prior work exhibit all the
above capabilities. Existing DTM approaches [3, 7, 5, 4, 1, 2]
supports durable composability and provides full-data consis-
tency. However, our analysis shows that none of the DTM
systems scales beyond 16 cores (see Figure 2). For example,
DudeTM [4] and Mnemosyene [7] scale poorly because of
the underlying STM, which is known for its poor scalability.
They extend STM with an extra durability layer, which incurs
a high write amplification (∼4-7×), as shown in Figure 2 in
the course of guaranteeing crash consistency.

On the other hand, Romulus [1] and KaminoTX [5] mini-
mize the write amplification by maintaining a full backup of
the NVMM, which derails the cost effectiveness of NVMM.
Moreover, existing DTM systems supports a limited write
parallelism, which impacts their scalability, or leave it en-
tirely to application developers to implement by themselves
with locks [3]. More recently, Pisces [2] attempts to provide
scalability by providing snapshot isolation. But the dual ver-
sion concurrency control and the synchronous write during
log reclamation in Pisces are bound to affect scalability and
increase the write amplification like other DTM approaches.
In a nutshell, the prior DTM systems does not scale for two
main reasons 1) limited read write parallelism 2) high write
amplification in the critical path of the transaction.

To address all these problems, we propose a new DTM
system, named TIMESTONE 1. which achieves 1) scalability
across multiple cores, guarantees 2) crash consistency with
significantly lower write amplification (< 1) and also maintains

*Jaeho Kim had contributed this work while he was at Virginia Tech.
1This work has been accepted to ASPLOS 2020, the full paper is attached

with this submission (Page 3-16)

3) minimal additional memory footprint.

2. Overview of TIMESTONE

In this section we briefly explain our design chocies and how
we use them to achieve our goals in TIMESTONE.

2.1. Multi-Versioning
Unlike Software Transactional Memory (STM), Multi-Version
Concurrency Control (MVCC) supports non-blocking reads
and disjoint non-blocking writes thus supporting higher read-
write parallelism. TIMESTONE adopts MVCC to achieve high
scalability and to support mixed isolation levels 2. Given
these benefits, naive adoption of MVCC will incur a lot of
write traffic, eventually increasing the write amplification in
the TIMESTONE. To solve this problem we propose a multi-
layered hybrid logging scheme called the TOC logging.

2.2. TOC Logging
As illustrated in Figure 1, in TOC logging, we use a volatile
log on the DRAM, named transient version log (TLog), and two
non-volatile logs, namely operational log (OLog) and check-
point log (CLog). The TIMESTONE transactions are executed
in the volatile TLog which significantly reduces the transac-
tional latency in par to executing on a slower NVMM (step
1 in Figure 1). Also, we do not immediately writeback the
updates to NVMM instead we allow sufficient time for up-
dates to coalesce (step 3 and 5 in Figure 1). This is key
to achieving a lower write amplification in TIMESTONE as
only the latest updates (step 4 in Figure 1) are checkpointed
to the CLog in NVMM by absorbing redundant writes back
in the TLog. The OLog is important to guarantee immediate
durability (step 2 in Figure 1) and if there is a power failure
before checkpointing the updates to NVMM then OLog can be
replied to get back to the last-commit state before the failure
occured. Finally, the CLog guarantees the consistency of the
master objects and further reduces the write amplification by
writing back (step 6 in Figure 1) only the latest checkpoints
to the master.
2.2.1. Scalable Garbage Collection TIMESTONE maintains
fixed size logs and hence the memory usage of logs are lim-
ited. If one or more logs becomes full, this could block all
writes until logs are reclaimed. Hence garbage collection can
directly impact write throughput. Also, a synchronous and
non-scalable garbage collection scheme can quickly become a
bottleneck hampering the performance of the system [8].

For the garbage collection to be scalable, TIMESTONE must
identify safe objects to reclaim without any centralized lookup
or coordination. Importantly, garbage collection must be

2Please refer our full paper [6] for more details on mixed isolation.

A B

∞ 50 40
B´

Master
Objects

C

45

add(C)
50

B´
99 50

NVMM DRAM

Checkpoint Copy

np-mastercommit-tsckpt-ts

Transient Copy

older-tscommit-tsnewer-ts
p-older

Operation
local-ts commit-ts

Transient Version
Log (TLog)

Operational
Log (OLog)

Checkpoint
Log (CLog)

ts::ts_txn::run(
 ts::serializable,
 [&](){ add(C);});
// local-ts = 45
// commit-ts= 50

High-Water Mark

1

2 3

4

56

ckpt-ts = 99

Figure 1: Illustrative example of adding a node in a TIMESTONE linked list. A thread adds a node C to a linked list in a TIMESTONE

transaction (ts_txn::run()) with a serializable isolation level (ts::serializable). Consider a transaction that starts at timestamp 45 (i.e.,
local-ts = 45) and commits at 50 (i.e., commit-ts= 50). TIMESTONE first creates a copy of node B in TLog (B’) and updates its next pointer to
node C 1 . When the transaction commits, TIMESTONE persists the executed operation (add(C)) to OLog making the transaction immediately
durable 2 . Steps 3 and 5 denotes the log capacity crossing the high-water mark and this triggers the checkpointing for TLog reclamation 4
and writeback for CLog reclamation 6 . During checkpointing, TIMESTONE checkpoints the latest transient copy (node B’) to the CLog so the
TLog can be reclaimed 4 . In the CLog reclamation, TIMESTONE writes back the latest checkpoint copy (node B’) to the master object and the
checkpoint log can be reclaimed safely 6 . The reclamation process is detailed in [6].

0
20
40
60
80

100
120
140
160
180

16 32 48 64 80 96 11
2

0

2

4

6

8

10

16 32 48 64 80 96 11
2

O
pe

ra
tio

ns
/µ

se
c

#threads

TIMESTONE-SI
TIMESTONE-S
TIMESTONE-L

W
ri

te
A

m
pl

ifi
ca

tio
n

#threads

RomulusLR
PMDK

DudeTM

Figure 2: Performance comparison of DTM systems for concurrent
hash tables with 2% update. Except TIMESTONE, prior systems
suffer from poor scalability and high write amplification.

NVMM-write aware so that it does not increase direct writes
to NVMM. Hence, TIMESTONE employs a timestamp-based
reclamation scheme where decisions like what/when to re-
claim are solely made based on the object-local timestamp
without accessing shared structures. To harness concurrency
in the garbage collection, TIMESTONE delegates responsibil-
ity of reclamation to each thread that holds the log itself (i.e.,
concurrent reclamation). To further reduce NVMM writes,
we introduce best-effort reclamation, which reclaims objects
that do not incur NVMM writes. Please see our full paper [6]
for more details.

3. Evaluation

We use a system with Intel Optane DC Persistent Memory
(DCPMM) for our evaluation. We evaluated the TIMESTONE
against all of the latest DTM works and as shown in Figure 2
it outperforms all of them upto 40× and shows a better scal-
ability. While the prior DTM systems suffers from 2×-6×
write amplification, TIMESTONE maintains it below 1. We
also evaluated the real world impact of TIMESTONE with
KyotoCabinet and YCSB workloads. TIMESTONE enabled
KyotoCabinet scales upto 64 cores while the vanilla KyotoCab-
inet saturates at the 16-core mark. For YCSB, TIMESTONE
enabled B+-tree outperforms DudeTM by upto 6× and shows
a better scalability across different workloads.

4. Conclusion
TIMESTONE at its’ core adopts MVCC for achieving high
scalability and TOC logging to always keep write amplifica-
tion < 1. TIMESTONE outperforms all the prior DTM systems
for different of workloads and benchmarks. For more de-
tails on TIMESTONE mixed isolation support, concurrent log
reclamation, decentralized log syncronization and a thorough
evalaution, please refer to our full paper [6].

References
[1] Andreia Correia, Pascal Felber, and Pedro Ramalhete. Romulus: Effi-

cient Algorithms for Persistent Transactional Memory. In Proceedings
of the ACM symposium on Parallelism in algorithms and architectures
(SPAA), Vienna, Austria, July 2018.

[2] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang,
Haibing Guan, and Haibo Chen. Pisces: A Scalable and Efficient Persis-
tent Transactional Memory. In Proceedings of the 2019 USENIX Annual
Technical Conference (ATC), pages 913–928, Renton, WA, July 2019.

[3] INTEL. Persistent Memory Development Kit, 2019.
[4] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei

Wu, Weimin Zheng, and Jinglei Ren. DudeTM: Building Durable Trans-
actions with Decoupling for Persistent Memory. In Proceedings of the
22nd ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), Xi’an, China,
April 2017.

[5] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi
Zhou, Ramnatthan Alagappan, Karin Strauss, and Steven Swanson.
Atomic In-place Updates for Non-volatile Main Memories with Kamino-
Tx. EuroSys17.

[6] Madhava Krishnan R., Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony
Demeri, Changwoo Min, and Sudarsun Kannan. Durable Transactional
Memory Can Scale with Timestone. In Proceedings of the 25th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Lausanne, Switzerland,
March 2020.

[7] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:
Lightweight Persistent Memory. In Proceedings of the 21st ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Atlanta, GA, April 2016.

[8] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An
Empirical Evaluation of In-memory Multi-version Concurrency Control.
In Proceedings of the 43rd International Conference on Very Large Data
Bases (VLDB), pages 781–792, TU Munich, Germany, August 2017.
VLDB Endowment.

2

	Introduction
	Overview of TimeStone
	Multi-Versioning
	TOC Logging
	Scalable Garbage Collection

	Evaluation
	Conclusion

