
Making Volatile Index Structures Persistent using TIPS

R. Madhava Krishnan Wook-Hee Kim Hee Won Lee∗

Minsung Jang† Sumit Monga Ajit Mathew Changwoo Min
Virginia Tech *Consultant †Perspecta Labs

1 Introduction
Maturing and hardening an index is hard. Indexes are a
fundamental building block in many storage systems. With the
advent of Non-volatile Main Memory (NVMM), there have
been a growing number of research efforts to develop new
NVMM-optimized indexes. However, maturing and hardening
an index requires a lot of time and effort. For example, recently
proposed NVMM indexes have critical limitations, such as (1)
weaker consistency guarantee, (2) limited concurrent access,
(3) not handling persistent memory leaks, and (4) not support-
ing variable-length keys. Such challenges in developing a new
persistent index has led to a growing interest in porting the
mature, volatile in-memory index to NVMM. However, prior
works show that manually porting the legacy code for NVMM
is complex requiring a lot of time and engineering effort and
also it is error-prone [7, 8].
Limitations of the State of the Art. A few recent stud-
ies [2–4, 6, 9] proposed techniques to convert volatile indexes
to NVMM, but they have some critical limitations. Most ap-
proaches have a limited applicability; NVTraverse [3] and
link-and-persist [2] can be applied only to lock-free indexes;
RECIPE [6] targets only lock-free or fine-grained lock based
indexes and requires in-depth knowledge on a target volatile
index for conversion; MOD [4] targets only purely functional
data structures. PRONTO [9] builds the index on the DRAM
preventing it from handling workloads beyond DRAM capacity.
In addition, RECIPE [6] and MOD [4] support only a weaker
non-durable linearizable consistency guarantee.
Our Approach. We propose TIPS, a systematic, index-
agnostic conversion framework to convert a volatile index to
NVMM supporting strong consistency guarantee.

2 Design of TIPS

Converting an Volatile Index using TIPS. TIPS APIs are
classified into facade APIs and plug-in APIs, which are self-
explanatory as shown in Figure 1. Developers can use the five
facade APIs to access the plugged-in index and to plug-in a
volatile index, they are required to modify their index imple-
mentation using TIPS plug-in APIs. As the example in Figure 2
suggests, applying TIPS to the existing volatile index follow
this simple guideline; 1) replacing the volatile memory allo-
cation (and free) with tips_alloc (and tips_free) and 2) in-
tercept any modifications to the NVMM address space with
tips_ulog_add call. The APIs and guidelines are same even for
the complex indexes that requires multi-pointer updates (e.g.,
B+tree split). Once an index is plugged-in to TIPS framework
it becomes persistent.
Running Example. The Figure 3 gives an overview of how the
access to the plugged-in index is managed within TIPS frame-

∗†The authors contributed to this work while they were at AT&T Labs
Research.

1 /* TIPS facade API to use a TIPS-enabled index */
2 bool tips_insert(void *ds, key_t k, value_t v, fn_insert_t *f);
3 bool tips_update(void *ds, key_t k, value_t v, fn_update_t *f);
4 bool tips_delete(void *ds, key_t k, fn_delete_t *f);
5 value_t *tips_lookup(void *ds, key_t k, fn_lookup_t *f);
6 value_t *tips_scan(void *ds, key_t start_key, int range,
7 fn_scan_t *f);

8 /* TIPS plug-in API to implement a TIPS-enabled index */
9 bool tips_ulog_add(void *addr, size_t size);

10 void* tips_alloc(size_t size);
11 void tips_free(void *addr);

Figure 1: TIPS APIs.

1 void hash_insert(hash_t *hash, key_t key, val_t value) {
2 node_t **pprev_next, *node, *new_node;
3 int bucket_idx;
4 pthread_rwlock_wrlock(&hash->lock);
5 // Find a node in a collision list
6 // Case 1: update an existing key
7 if (node->key == key) {
8 // Before modifying the value, backup the old value
9 + tips_ulog_add(&node->value, sizeof(node->value));

10 node->value = value; // then update the value
11 goto unlock_out;
12 }
13 // Case 2: add a new key
14 // Allocate a new node using tips_alloc
15 + new_node = tips_alloc(sizeof(*new_node));
16 new_node->key = key; new_node->value = value;
17 new_node->next = node;
18 // Backup the prev node before modifying it
19 + tips_ulog_add(pprev_next, sizeof(*pprev_next));
20 *pprev_next = new_node; // then update then the node
21 unlock_out:
22 pthread_rwlock_unlock(&hash->lock);
23 }

Figure 2: Code snippet of a TIPS-enabled hash table insert. TIPS

plugin APIs are used for UNDO logging (Lines 9, 19) and memory
allocation (Line 15).

work. When the user issues a write (1) using one of the facade
APIs, TIPS first records the operation in the per-thread opera-
tional log (OLog) to guarantee durability (2) and then adds the
key-value pair to DRAM-cache to make the writes visible to
the readers (3 is the linearlization point) and thus guarantee-
ing durable linearizability. TIPS-Backend then asynchronously
propagates the writes to the plugged-in index by replaying
the OLog entries in the global timestamp order (4). Once the
plugged-in index is updated the corresponding DRAM-cache
entry is safely reclaimed. A lookup operation first looks for
the requested key on the DRAM-cache and accesses the user
plugged-in index on NVMM only when the DRAM-cache miss
happens. A scan operation is always served from the NVMM
index because it requires the full key-value data. Below we
discuss the key insights of our design and briefly explain how
they help TIPS to achieve its goals.

(1) DRAM-NVMM Tiering for Index-agnostic Conversion.
The DRAM-cache provides an generic interface to access the
plugged-in index. On a high level, DRAM-cache behaves sim-
ilar to that of a CPU cache; it is transparent to the develop-
ers, and all the writes are absorbed in it. While plugging-in a
volatile index, we essentially superimpose it on DRAM-cache;
so the writes to the plugged-in index first goes to DRAM-cache

1

Application
Thread

TIPS
Frontend

K V’ ...
DRAM
Cache

1 Execute a TIPS facade API (tips_insert) with
a user-provided insert function (btree_insert)

3 Insert k/v to a TIPS-managed
DRAM cache (linearlization point)

Per-thread
Operational
Log (OLog)

...
btree_insert(
 btree,k,v)
@entry-ts

2
Insert the operation to operational
log with a
timestamp (durability point)

...

TIPS
Backend

Plugged-in btree
index structure

4 Replay operational logs in a
global timestamp order (i.e.,
execute btree_insert)

UNDO log
(ULog)

...V

V’

MEM log
(MLog)

...f:a1
m:a2

4 UNDO log the data
before update

4 Log allocated and freed
memory addresses

n application thread background persist thread n DRAM NVM

void add_customer (btree, k, v) {
 tips_insert(btree, k, v, btree_insert);
}

Figure 3: Illustrative example of inserting a key-value pair in TIPS.

and then the TIPS backend updates the plugged-in index in
a crash consistent manner. Thus TIPS does not rely on any
index-specific optimizations and does not place any restrictions
on the concurrency model of indexes. This tiering between
DRAM-cache and the plugged-in index enables an interesting
concurrency model called the tiered concurrency model which
is key for good performance and scalability of TIPS.

(2) Tiered Concurrency Model for Scalability. The
DRAM-cache is concurrent hash table capable of supporting
parallel readers and parallel disjoint writers. Hence, the requests
that succeed in the TIPS frontend (all writes and read hits) will
follow the concurrency model of DRAM-cache and the opera-
tions that go to TIPS backend (read misses and scan) will follow
the concurrency model supported by the plugged-in index. This
tiered concurrency model has excellent benefits in practice. It
enables any volatile index regardless of its concurrency model
to be plugged-in to TIPS without any restrictions unlike the pre-
vious studies [2, 3, 6]. Thus, even if an index using only a global
mutex is plugged-in to the TIPS framework, all writes and reads
hitting the DRAM-cache will be concurrently processed.

(3) UNO Logging for Index-agnostic Crash Consistency. It
is important for TIPS to provide a generic crash consistency
mechanism to support an index-agnostic conversion. At the
same time, TIPS needs its crash consistency mechanism to be
low overhead to ensure high performance and fast recovery.
TIPS proposes UNO logging mechanism which synergistically
uses the traditional UNDO logging (ULog) and operational
logging (OLog) technique to support a low overhead durability
and crash consistency; TIPS uses OLog to efficiently guarantee
durability for the updates on the DRAM-cache (2 , avoiding
costly UNDO logging in the critical path) and TIPS background
thread uses the global ULog to ensure crash consistency while
replying updates to the plugged-in index (4 , amortizing the
UNDO logging cost with a larger batch). Finally, TIPS uses
MLog to keep track of all the allocated/freed addresses to pre-
vent persistent memory leaks across power cycles.

0
2
4
6
8

10
12

W-A W-B W-C W-D W-E
0.00
0.02
0.04
0.06
0.08
0.10

1 16 32 48 64

M
op

s/
se

c

YCSB Workloads

TIPS-B+tree
PRONTO-B+Tree

RECIPE
FastFair
BzTree

M
op

s/
se

c

Clients

TIPS-Redis
NVMM-Redis
PMEM-Redis
DRAM-Redis

Figure 4: Performance comparison of TIPS-B+tree with RECIPE
(P-BwTree), PRONTO, FastFair and BzTree (Left). Performance com-
parison of TIPS-Redis with vanilla Redis running on NVMM, DRAM
and Intel’s PMEM-Redis (Right).

3 Evaluation
Evaluation Environment. We converted seven volatile in-
dexes with different concurrency models and the Redis Key-
value store using TIPS. All our index conversions required
only 5-9 LOC changes in the existing codebase. Below we
present the performance of TIPS enabled B+tree (TIPS-B+tree)
and TIPS-Redis. We performed our evaluation on a 64-core
Intel server equipped with a real NVMM using YCSB work-
loads with 32 Million integer keys. We set the size of the
DRAM-cache to cache 25% of total keys.
B-trees. We evaluated TIPS against the state-of-the-art index
conversion techniques RECIPE [6], PRONTO [9] and B+-tree
indexes optimized for NVMM: FastFair [5]and BzTree [1]. Fig-
ure 4 shows that TIPS-B+tree outperforms all the state-of-the-
art B+tree indexes. Apart from the performance, TIPS-B+tree
guarantees strong consistency, supports variable-length keys
and provides a fast and correct recovery internally addressing
the persistent memory leaks all in an index-agnostic manner.
Redis Key-Value Store. Similarly, TIPS-Redis outperforms
the vanilla Redis running on the NVMM (NVMM-Redis) and
shows a comparable performance to vanilla Redis running on
the fast DRAM (DRAM-Redis) and Intel’s PMEM-Redis. Note
that the PMEM-Redis stores entire Redis core and all keys on
the DRAM and just stores the values on the NVMM. Apart from
the performance, TIPS-Redis provides near instant recovery and
4× more capacity-scaling while the DRAM-Redis and PMEM-
Redis can not scale beyond the size of the DRAM and it takes
up to 100 seconds for both Redis versions to recover the data
as they rely on the SSDs for durability.

References
[1] Arulraj et al. Bztree: A High-performance Latch-free Range Index for

Non-volatile Memory, VLDB 2018.
[2] Davidet al. Log-free concurrent data structures, ATC 2018.
[3] Friedman et al. NVTraverse: In NVRAM Data Structures, the Destination

is More Important than the Journey, PLDI 2020.
[4] Haria et al. MOD: Minimally Ordered Durable Datastructures for Persis-

tent Memory, ASPLOS 2020.
[5] Hwang et al. Endurable Transient Inconsistency in Byte-addressable

Persistent B+-tree., FAST 2018.
[6] Lee et al. RECIPE: Converting Concurrent DRAM Indexes to Persistent-

Memory Indexes, SOSP 2019.
[7] Marathe et al. Persistent Memcached: Bringing Legacy Code to Byte-

Addressable Persistent Memory, HotStorage 2017.
[8] Memaripour et al. Breeze: User-Level Access to Non-Volatile Main Mem-

ories for Legacy Software, ICCD 2018.
[9] Memaripour et al. Pronto: Easy and Fast Persistence for Volatile Data

Structures, ASPLOS 2020.

2

