WITCHER: Systematic Crash Consistency Testing for
Non-Volatile Memory Key-Value Stores

Wook-Hee Kim
Virginia Tech

Xinwei Fu
Virginia Tech

Sunny Wadkar
Virginia Tech

Abstract

The advent of non-volatile main memory (NVM) enables the
development of crash-consistent software without paying
storage stack overhead. However, building a correct crash-
consistent program remains very challenging in the presence
of a volatile cache. This paper presents WITCHER, a system-
atic crash consistency testing framework, which detects both
correctness and performance bugs in NVM-based persistent
key-value stores and underlying NVM libraries, without test
space explosion and without manual annotations or crash
consistency checkers. To detect correctness bugs, WITCHER
automatically infers likely correctness conditions by analyzing
data and control dependencies between NVM accesses. Then
WrTcHER validates if any violation of them is a true crash
consistency bug by checking output equivalence between
executions with and without a crash. Moreover, WITCHER
detects performance bugs by analyzing the execution traces.
Evaluation with 20 NVM key-value stores based on Intel’s
PMDXK library shows that WiTcHER discovers 47 (36 new)
correctness consistency bugs and 158 (113 new) performance
bugs in both applications and PMDK.

CCS Concepts: « Hardware — Emerging technologies;
« Software and its engineering — Software testing and
debugging.

Keywords: Non-volatile Memory, Crash Consistency, De-
bugging, Testing

ACM Reference Format:
Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad
Ismail, Sunny Wadkar, Dongyoon Lee, and Changwoo Min. 2021.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’21, October 26-29, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8709-5/21/10...$15.00
https://doi.org/10.1145/3477132.3483556

Dongyoon Lee
Stony Brook University

100

Mohannad Ismail
Virginia Tech

Ajay Paddayuru
Shreepathi
Stony Brook University

Changwoo Min
Virginia Tech

WITCHER: Systematic Crash Consistency Testing for Non-Volatile
Memory Key-Value Stores . In ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP °21), October 2629, 2021, Virtual
Event, Germany. ACM, New York, NY, USA, 16 pages. https://doi.
org/10.1145/3477132.3483556

1 Introduction

Non-volatile main memory (NVM) technologies, such as
Intel’s Optane DC Persistent Memory [15, 61], is on the rise:
e.g., Google Cloud [2] and Aurora supercomputer [1]. NVMs
provide persistence of storage along with traditional DRAM
characteristics such as byte addressability and low access
latency. The ability to directly access NVMs using regular
load and store instructions provides a new opportunity to
build crash-consistent software (e.g., NVM-backed key-value
stores) without paying storage stack overhead. Programs can
recover a consistent state from a persistent NVM state in the
event of a software crash, or a sudden power loss.
However, it is hard to design and implement a correct and
efficient crash-consistent NVM program. NVM data on a
volatile cache may not be persisted after a crash. A cache can
also evict cache lines in an arbitrary order. Thus, the updates
to different NVM locations may not be persisted in the same
order as the program (store) order. The existing ISAs also do
not support updating multiple NVM locations atomically.
To ensure crash consistency, the current NVM program-
ming model requires (either application or library) devel-
opers to explicitly add a cache line flush and store fence
instructions (e.g., clwb and sfence in x86 architecture) and
to devise a custom mechanism to enforce proper persistence
ordering and atomicity guarantees. NVM programming thus
becomes error-prone and misuse of NVM primitives may
lead to correctness bugs (e.g., misplaced flush/fence) or per-
formance bugs (e.g., redundant flush/fence). A correctness
bug! is particularly critical as a program may lead to an in-
consistent NVM state on a crash and fail to recover with
permanent data corruption, irrecoverable data loss, etc.
Recently, several solutions have been proposed to detect
persistence bugs in NVM programs. However, there are two
critical issues, namely (1) scalability against testing possible

!n this paper, we refer to a crash consistency bug as a correctness bug to
differ it from a performance bug, though it is one kind of correctness bugs.

https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1145/3477132.3483556
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

NVM states and (2) the need to create manual test oracles
to validate testing correctness. These issues still make it
challenging to effectively test NVM-backed persistent key-
value stores, one of the most prominent application domains
among NVM software: e.g., Level Hashing [88], RECIPE [54],
Redis [13], and Memcached [10].

A line of testing tools that attempt to exhaustively test
all possible NVM states (e.g., Yat [52], PMReorder [39], and
SCMTest [69]) has the potential to detect many bugs, but
often suffer from test space explosion. To bound search cost,
persistent key-value stores are typically backed by data struc-
tures with rebalancing operations (e.g., rehashing in a hash
table, split-merge in a B-tree). Triggering such operations
and detecting persistence bugs therein require a test case
with a large number of operations (a long execution), making
exhaustive testing infeasible in practice.

Moreover, for a test oracle, existing NVM testing tools
require users to provide a manually-designed, application-
specific consistency checker to validate a program under
test: e.g., manual annotations in PMTest [57] and XFDetec-
tor [56], consistency checkers in Yat [52], application-specific
oracles in Agamotto [67], ordering configurations in PMDe-
bugger [26]. Persistent key-value stores often employ dif-
ferent forms of inconsistency tolerable and/or recoverable
design. Devising application-specific test oracles not only
requires significant manual efforts, but also is error-prone.

This paper presents WITCHER, a new crash consistency
testing framework that systematically explores the NVM
state test space (without test space explosion) and automati-
cally validates if each feasible NVM state is consistent or not
(without manual test oracles). WITCHER detects application-
specific correctness bugs (e.g., persistence ordering and atom-
icity violations) using application-agnostic rules. It can also
identify performance bugs (e.g., extra flush/fence) by analyz-
ing the execution trace.

To address the test space challenge, WITCHER infers a
set of likely-correctness conditions that are believed true to
be crash-consistent by analyzing program data/control de-
pendencies among NVM accesses. WITCHER then tests only
those NVM states that violate the likely-correctness con-
ditions, significantly reducing the NVM state test space.
Though WITCHER may unsoundly prune some NVM states
to test, our evaluation shows that it can effectively prune
the test space and detect many new correctness bugs. Since
the likely-correctness conditions were derived from common
NVM programming patterns, they are applicable to non-key-
value applications. We show that WITCHER detects crash
consistency bugs in PMDK’s persistent pool management
codes (§7.2) and non-key-value applications (§7.7).

To mitigate the test oracle problem, WITcHER employs out-
put equivalence checking between program executions with
and without a (simulated) crash. Persistent key-value stores
are often designed to provide atomic (all or nothing) seman-
tics upon a crash at the operation granularity (e.g., insert,

delete), more formally, durable linearizability [44]. If a key-
value store resuming from an NVM state that violates a likely-
correctness condition produces an output that is different
from the executions without a crash, then we can confidently
conclude that the program is not crash-consistent, and the
violation is indeed a true crash consistency bug. Our output
equivalence checking requires determinism and checks for
durable linearizability. Thus WITCHER may not be applicable

to NVM programs that permit non-deterministic output (e.g.,

timestamp) or non-durable-linearizable behaviors.

We evaluated WITcHER with 20 NVM-backed persistent
key-value stores that are ported with Intel’s PMDK library.
Using randomly generated test cases with 2000 operations,
WrTCHER detected 47 (36 new) correctness bugs and 158 (113
new) performance bugs in 20 programs. WITCHER can detect
bugs not only in applications but also in low-level PMDK
libraries whose bug manifests as different outputs at the ap-
plication level. For instance, WITCHER finds a correctness
bug in PMDK’s persistent pool/heap management library,
classified as “Priority 1: showstopper” [8]. All new correct-
ness bugs are confirmed by the developers.

This paper makes the following contributions:

e We propose a new NVM software testing approach that
infers likely-correctness conditions to effectively explore
NVM state test space, and performs output equivalence
checking to identify an incorrect execution without user-
provided test oracles. To the best of our knowledge, WITCHER
is the first NVM testing tool that uses application-agnostic
rules to find application-specific correctness bugs.

e WITCHER detects 205 (149 new) correctness/performance
bugs in NVM-backed key-value stores and PMDK library.
WiTcHER does not suffer from test space explosion nor
requires manual test oracles to detect them. The current
WITCHER prototype focuses on testing key-value stores in
which operation interfaces are well known and thus output
equivalence checking can be automatically performed. The
proposed ideas can be extended and applied to other NVM
programs beyond key-value stores.

2 Background

This section demonstrates the types of correctness bugs (§2.1)
and performance bugs (§2.2) that WrtcHER found in crash-
consistent NVM programs, along with real-world examples.

2.1 Correctness Bugs

As a processor can evict cache lines in an arbitrary order and
does not support atomic update of multiple NVM locations,
crash consistency is the problem of guaranteeing persistence
ordering and atomicity of NVM locations according to pro-
gram’s semantics. Thus, violating these is the primary reason
for correctness bugs in NVM programs.

(1) Persistence ordering violations. We found that many
crash consistency and recovery mechanisms rely on a certain
(application-specific) persistence ordering of NVM variables.

However, a buggy NVM program may not maintain proper
persistence ordering using a cache line flush and a store
fence instructions when updating multiple NVM locations.
For example, Level Hashing [88] introduces log-free write
operations. It maintains a flag token for each key-value slot
where the token denotes if the corresponding key-value slot
is empty or not. Figure 1(b) shows the log-free level_insert
function. It intends to update the key-value slot (Lines 14, 15)
before updating the token (Line 18). However, if a crash hap-
pens after the token’s cache line is evicted (thus persisted) but
before the key-value slot’s cache line is not (before enforcing
cache line flushes at Lines 20-22), an inconsistent state could
occur - the token indicates that the corresponding key-value
slot is non-empty, but the slot is never written to NVM. Thus,
the garbage value can be read (as in Figure 3(h)), implying
that the insert operation failed to provide an atomic (all or
nothing) semantic upon a crash. The persistent barriers at
Lines 20-23 should be moved before updating the token at
Line 18.
(2) Persistence atomicity violations. To ensure the in-
tegrity of NVM data, many NVM programs rely on atomic
update of NVM variables. However, a buggy NVM program
may not correctly enforce persistence atomicity among mul-
tiple NVM updates. If a program crashes in the middle of a
sequence of NVM updates, an inconsistent state may occur.
Figure 1(c) shows a persistence atomicity bug found in
Level Hashing’s 1evel_update function. Level Hashing op-
portunistically performs a log-free update. If there is an
empty slot in the bucket storing the old key-value slot, a
new slot is stored to the empty slot (Lines 34, 35), and then
the old and new tokens are modified (Lines 38, 39). Since the
new slot is not overwritten to the old slot, Level Hashing
can avoid costly logging operations. However, the code in-
correctly assumes that updating two tokens is atomic. If a
crash happens right after turning off the old token (Line 38)
and the cache line of the old token is evicted (persisted), the
crash consistency problem happens. Since the old token is
persisted with 0 (empty) but the new token (Line 39) is not
turned on, we permanently lose the updating key. To solve
this bug, we have to persist two tokens atomically.

2.2 Performance Bugs

Previous studies [57, 67] found that performance bugs are
prevalent in real-world NVM programs. Performance bugs
do not cause an inconsistent state, yet it requires significant
developer’s time and effort to spot and fix them. Similar to
prior work, we classify NVM performance bugs as follows:

(1) Unpersisted performance bugs. Some NVM programs
unnecessarily place volatile data that does not require persis-
tence in NVM. Developers do not use flush/fence for volatile
data. However, NVM incurs higher latency than DRAM. De-
velopers should have placed them in DRAM.

102

(a) @level hashing.c:334 (Level Hashing 28eca31)

; uint® t* level static_query(level hash *levelé duint87t *key) {

3 if (level—buckets[i][f idx]|token[j]

g stremp(level—>buckets[i][f idx].slot[j]] key)==0) {

2 p return level—>buckets[i][f_idx].slot[i]. R
D;:.l.)endencies Likely-Correctness Conditions

I1: P(key) —hb, W(token)
12: P(value) —1B, W(token)
13: AP(token[j], token[k])

DI: R(key) —9. R(token)
D2: R(value)—9» R(token)

(b) @level hashing.c:492 (Level Hashing 28eca3 1)
11 uint8 tlevel insert(

12 level_hash *level, uint8_t *key, uint8_t *value) {

13

14 memcpy(level->buckets[i][f idx].slot[j].key, key, K LEN);
15 memcpy(level—>buckets[i][f idx].slot[j].value,

16 value, V_LEN); Likely Ordering Violation
17 hb

18 level—buckets[i][f idx].

19

20 pflush((uint64 t *)&leve1—>buckets[i][fiidx]..slot[i].);
21

22 pflush((uint64_t *)&level—buckets[i][f idx].slot[j].);
23 asm_mfence();

24 pflush((uint64 t *)&level->buckets[i][f idx].token[j]);

25 level->level item num[i] ++;

26 asm_mfence();

27

(c) @level hashing.c:413 (Level Hashing 28eca31)
31 uint8 tlevel update(

32 level hash *level, uint8_t *key, uint8 t *new_val) {
33

34 memcpy(level->buckets[i][f idx].slot[k].key, key, K LEN);
35 memcpy(level—buckets[i][f idx].slot[k].value,

gg new_val, V,LENI)‘iomicity’ Likeé;\" z?to'micity

38 level—buckets[i][f idx]. [tokenfj]]—0; o/2on

39 level—buckets[i][f idx]. |token[k]|= 1;

40

41 pflush((uint64 t *)&level->buckets[i][f idx].slot[k].key);
42 pflush((uint64 t *)&level->buckets[i][f idx].slot[k].value);
43 asm_mfence();

44 pflush((uint64 _t *)&level->buckets[i][f idx].token[j]);

45 asm_mfence();

46

R(X):read X W(X):writeX P(X):persistX AP(X,Y):X, Y persisted atomically

d hb
E1 > E2: E1 is control dependent on E2 E1 — E2: E1 should happen before E2

Figure 1. Using the likely-correctness conditions inferred from (a),
WITCHER finds two correctness bugs (b) and (c) in Level Hashing.

(2) Extra flush and (3) extra fence performance bugs.
An extra flush or fence instruction on an NVM variable
causes unnecessary high overhead. The extra can be removed
without breaking the correctness of an NVM program.

(4) Extra logging performance bugs. When an NVM pro-
gram relies on a transaction library (e.g., Intel’s PMDK) for
crash consistency, the NVM data should be (undo) logged
before it is modified the first time. Logging the same NVM
region redundantly in a transaction is a performance bug.

3 Overview of Our Approach

We first introduce how WiTcHER finds correctness bugs
(§3.1) and performance bugs (§3.2). Then we will discuss
how WITCHER advances exiting approaches (§3.3).

3.1 Correctness Bug Finding

To detect correctness bugs, WITCHER infers likely-correctness
conditions (§3.1.1) and performs output equivalence check-
ing to validate the NVM states violating them (§3.1.2).

3.1.1 Inference of Likely-Correctness Conditions. We
propose a novel approach that analyzes program data/control
dependencies among NVM accesses to infer likely-correctness
conditions enforcing persistence ordering and persistence
atomicity guarantees among NVM accesses. Our key observa-
tion is that programmers often left some hints on what they
want to ensure in the source code in the form of data/control
dependencies and we can infer the corresponding likely per-
sistence ordering/atomicity conditions.

Using the aforementioned Level Hashing example, let us
demonstrate how we can infer a likely-correctness condition
from the query function level_static_query in Figure 1(a),
and apply it to find the correctness bugs in level_insert and
level_update in Figure 1(b) and (c). level_static_query
reads the key/value only if the token is non-empty. In other
words, there is control dependency between the read of a
token and a key-value pair (Lines 3-7); e.g., we denote it
as R(slot[j].key) ﬂ>R(token[j 1). We analyze the implica-
tion of this control dependency as follows.

We first refer to the common NVM programming pattern
that uses a flag (token) to ensure the persistence atomic-
ity of data (key/value) as guarded protection. We have ob-
served this guarded protection pattern in many NVM pro-
grams including key-value stores [4, 60, 82], logging im-
plementations [16, 35, 36, 43, 51, 74, 81], persistent data
structures [22, 24, 37, 49, 53, 54, 65, 71], memory alloca-
tors [17, 25, 38, 70, 77], and file systems [23, 27, 28, 46, 83].
The guarded protection follows the following reader-writer
pattern around a flag variable, which we call “guardian”; (1)
The writer ensures that both key and value are “persisted be-
fore” the flag is persisted (Figure 1(b)); (2) The reader checks
if the flag is set before reading the key and value, which we
call “guarded read” (Figure 1(a)). The persistence ordering
(for the writer side) and the guarded read (for the reader
side) together ensure that the reader reads atomic (both old
or both new) states of key and value.

From the guarded read pattern in Figure 1(a), we infer
the first likely persistence ordering condition; a key-value
pair should be persisted before a token — we denote it as

P(slot[j].key/value) iw&oken[j]). We then extend it
to the second likely persistence atomicity condition — the
updates of two or more guardians should be atomic (i.e.,
AP(token[j],token[k])). Otherwise, an atomic update of
multiple key-value slots cannot be guaranteed.

103

Later we find that level_insert violates the persistence
ordering condition at Line 18, and 1evel_update violates the
persistence atomicity condition at Line 39. WITCHER tests
only NVM states that violate the inferred likely-correctness
conditions. For example, in level_insert we test only one
case that a token is persisted but a key-value pair is not
persisted, which violates the writer pattern in the guarded
protection. Similarly, in level _update we test two cases that
one token is persisted and another token is not.

In this way, WITCHER uses likely-correctness conditions to
reduce NVM state testing space without manual annotations.
In §4.2, we present more generalized rules to infer likely-
correctness conditions beyond guarded protection. WITCHER
does not require prior knowledge of truth and does not as-
sume the conditions are always correct; if two conditions
contradict, we test both cases to discern which one is correct
using output equivalence checking.

3.1.2 Validation with Output Equivalence Checking
WITCHER uses output equivalence checking to validate if an
NVM state that violates an inferred likely-correctness con-
dition is indeed inconsistent, indicating a crash consistency
bug. Many NVM programs, including a persistent key-value
store, aim to provide durable linearizability [44] at the op-
eration granularity (e.g., insert, delete). That is, upon a
crash, an NVM program should behave as if the operation
where the crash occurred is either fully executed or not at all
executed (i.e., all or nothing semantics). Therefore, WITCHER
can validate crash consistency by comparing the outputs
of executions with and without a crash. If a program that
recovers from an NVM state violating a likely-correctness
condition produces an output different from the executions
without a crash, then we can confidently conclude that the
program is not crash-consistent. If so, the violation of a
likely-correctness condition is a true bug.

Output equivalence checking allows WITCHER to automat-
ically detect correctness bugs without manual annotations
or a user-provided full consistency checker. Output equiv-
alence checking requires that the test case is deterministic;
i.e., given the same input, a program should produce the
same output. Moreover, output equivalence checking relies
on test cases, and thus some crash consistency bugs may not
be detected if they do not produce visible symptoms (e.g.,
segmentation fault, different output, etc.) on the given test
cases. This implies that we may have false negatives. How-
ever, any detected output divergence is indeed an indicator
of a true correctness bug; i.e., we do not have false positives.

3.2 Dynamic Trace Based Performance Bug Finding

WITCHER uses a trace-based approach to detect performance
bugs. Unlike finding correctness bugs, which requires search-
ing possible crashed NVM states, detecting performance bugs
does not need crash simulation and only requires tracking
the NVM persistence state in program order. For example,

‘ Crash consistency
‘ validation (oracle)

‘ Test space exploration
‘ Input ‘ NVM State

Yat [52]
PMReorder [39]

user-provided
test case
user-provided
test case
user-provided
test case
symbolic
execution
user-provided
test case

user-provided

exhaustive
oracle

model checking

X . visible manifestation
with pruning

Jaaru [32]

PMTest [57]
XFDetector [56]

user-provided
oracle

user-provided
oracle

user-provided
oracle

manual annotation

PM-aware
search algorithm
user-provided
oracle

Agamotto [67]

PMDebugger [26]

systematic pruning based on
likely-correctness conditions

output equivalence

‘WITCHER user-provided
checking

(this work) test case

Table 1. Comparison with existing crash consistency testing tools.

to detect an extra flush performance bug, the persistence
state of the cacheline to be flushed before executing the flush
instruction is needed. WITCHER leverages the collected dy-
namic program trace and detects performance bugs during
NVM persistence simulation.

3.3 Comparison with Existing Solutions

Table 1 summarizes how WITCHER is different from existing
crash consistency testing tools when it comes to detecting
correctness bugs. For performance bugs, WITCHER is similar
to existing work, and §7.6 later shows the pros and cons of
WITCHER’S trace-based approach, compared to the symbolic
execution-based approach in Agamotto [67].

Exhaustive testing tools, such as Yat [52] and PMReorder [39],
attempt to permute all possible NVM states on a crash. How-
ever, they often do not scale. For example, during testing
Level Hashing with 2000 operations, Yat attempts to test 103!
total permutations (see §7.5). Moreover, for each crashed
state, they rely on a user-provided consistency checker to
validate whether NVM data is consistent. However, the cor-
rectness of a manual checker is often a concern [45]. Re-
cently, Jaaru [32], a model checking approach, proposed a
(sound) state pruning solution based on the actual values
read by post-failure executions, yet the test space may still
remain huge. Empirically, Jaaru has been applied to the test
cases with up to (small) 40 operations. In addition, Jaaru can
only identify bugs that lead to visible crashes (e.g., segmenta-
tion faults) or assertion failures. Later in §7.5, we show that
WITCHER effectively prunes NVM state test space based on
likely-correctness conditions.

The test space explosion problem motivated the annotation-
based approach, such as PMTest [57] and XFDetector [56].
However, annotating a large NVM software soundly and pre-
cisely is very challenging. A missing/wrong annotation may
lead to false negatives/positives. In addition, PMTest lacks
support for detecting persistence atomicity violations such as
Figure 1(c). XFDetector relies on user’s manual investigation
for validation. Agamotto [67] takes a different approach, us-
ing symbolic execution to explore input test space (program
paths). It provides universal bug oracles for common bug
patterns (i.e., missing or redundant flush/fence bug patterns).
However, for app-specific correctness bugs (e.g., persistence

104

ordering/atomicity violations), Agamotto still requires users
to provide test oracles. Similarly, PMDebugger [26] requires
user-provided oracles (i.e., ordering debugger configuration
file) to detect app-specific correctness bugs. Later in §7.6, we
show WITCHER with output equivalence checking can detect
the correctness bugs that the prior testing tools found and
more without user-provided oracles or annotations.

4 Design of WITCHER

Figure 2 illustrates WITCHER architecture that takes as input
a target program (NVM-based persistent key-value stores)
and a test case (some sequences of insert, delete, query,
etc. operations); and reports as output detected correctness
and performance bugs in the program. WITCHER first in-
struments the program and runs the test case to collect a
memory trace (§4.1). For correctness bugs, WITCHER infers
likely-correctness conditions from the trace (§4.2), constructs
a set of crash NVM images violating the likely-correctness
conditions (§4.3), and performs output equivalence checking
to validate if a likely-correctness condition violation is a true
correctness bug (§4.4). WITCHER analyzes the same trace to
detect performance bugs as well (§4.5).

WITCHER supports testing not only applications (key-value
stores) but also PMDK libraries (e.g., persistent heap manage-
ment, transaction undo logging) as the PMDK libraries inter-
nally use low-level persistence primitives (such as flush and
fence instructions) for crash consistency. WITCHER provides
limited support for multi-threading, which will be further dis-
cussed in §5.2. This section assumes testing single-threaded
programs.

4.1 Tracing Memory Accesses

WITCHER instruments an NVM program using an LLVM
compiler pass [14] and executes the instrumented binary
with a test case to collect the execution trace. We trace load,
store/non-temporal store? (including the updated value),
branch, call/return, flush and memory fence instructions.

Suppose we trace Level Hashing in Figure 1 using the
test case with four operations in Figure 3(a). Figure 3(b)
shows the trace of the last level_static_query(k). Each
trace includes a unique Trace ID (TID), a Static instruction ID
(SID), which is the instruction location in the binary, and the
instruction type. For load and store, WITCHER additionally
traces its address, length (not shown), and data (for store),
and whether it accesses DRAM (white) or NVM (gray).

4.2 Inferring Likely-Correctness Conditions

WITCHER correlates program data/control dependencies with
NVM crash consistency correctness conditions. We first de-
scribe a set of inference rules for (1) likely persistence order-
ing conditions and (2) likely persistence atomicity conditions

2Non-temporal stores are supported/modeled as store+flush.

o Likely-correctness
Test Cases - Traces In: erring Conditions »| Generating Crash NVM Images > Output || s Correctness Bugs
insert(k,v1) Tracin Lilay Crash NVM Porsisted ed) | Equivalence
delete(k) v g store K Correctness | |P(K) <, W(T) Images IMG1 -l":'s‘s"e UI'?e\‘}S‘s‘e Checkin
insert(k.v2) Aoy | N Conditions | [P(V) <, W(T) (a3 ||Mezk TV Sy
query(k) (ngsls)es flush K.V (§4.2) g -
Program H- Trace-based Performance Bug Detection (§4.5) I—‘> Performance Bugs

Figure 2. The architecture of WITCHER. WITCHER automatically detects (application-specific) correctness bugs (in blue) and performance
bugs (in green) based on a given test case and its trace (in gray) without either manual annotation/oracle or exhaustive testing.

(a): Test case (b): Trace of query(k) (¢): PDG (e): Inferred Likely-correctness Cond’s (g): Crash NVM Images
#| operation TID | SID | ¢ ad dat I1: hb 12: hb # Persisted | Unpersisted | Condition
ype | addr ata
: . P(key)=s-W(token) P(val) = Wi(key) IMG1 token key,val 11,13,14
0| insert(k, v0) 300 | 3 load | &i 3: 14:
1| delete(k) 301 3 load &F idx P(val) —» W(token) AP(token, key) IMG2 key token,val 12,14
2| insert(k, v1) 302 3 load | &j (f): Trace of insert(k, vI) (h): Output Equivalence Checking
3| query(k) 303 3 load | &bucket TID | SID | type | addr data Crash - Orac'le
304 | 3 | load | &token 200 | 14 | store | &key | Kk insert(k,v0) inseri(k,v0) | inser((k,v0)
delete(k) delete(k) delete(k)
@ NVMaccess|[| 305 3 branch 201 15 | store | &val “v1” insert(k,v1)
. : i insert(k,v1)
@ other inst 306 5 load | &key (d) PersnstencedPDG (PPDG) 202 | 18 | store | &token 1 query(k) query(k)
c
od control 307 5 branch n 203 | 20 | flush | &key Recovery T or ol
o Sependency || 308 [7| toad | sl 204 | 22 | flush | &val query(k) LM
» u‘,
gi;)acndcncy val key token 205 | 23 | fence e Bug!

Figure 3. An example of WITCHER’s correctness bug detection steps.

(§4.2.1). Then we explain how WITCHER uses program de-
pendence analysis to infer the likely-correctness conditions
from the trace (§4.2.2).

4.2.1 Inference Rules Table 2 summarizes the inference
rules. At a high level, each rule looks for control and/or
data dependency Hints between NVM locations X and Y in a
program. WITCHER then infers a Persistence Ordering (PO)
likely-correctness condition that “X should be persisted be-
fore Y” or a Persistence Atomicity (PA) condition that “X and
Y should be persisted atomically”. WITCHER later constructs
an NVM state that violates a likely-correctness condition —
e.g., “Y is persisted, but X is not” (§4.3) and tests if the likely
ordering/atomicity violation is a true crash consistency bug
using output equivalence checking (§4.4). In other words,
for two NVM addresses X and Y, if WiTcHER does not detect
any dependency, it does not test such cases involving X and
Y. Hence, it saves the test time, assuming that independent
NVM objects do not lead to an inconsistent state.

M Hint Likely-correctness Cond NVM Image
Example Rule Example Rule P U
PO1|Y=X+3; WD SRE [X=. . ¥=.. ;[P Dwn | v x
P02 |if(X){Y=3;} W(Y)C—d>R(X) X=...;Y=...; P(X)KW(Y) Y X
PO3|i£(X) {Z=Y+3;} [RCD SR Y= .. ;X=.. .3 |[POD w0 | x| ¥
R _ . cd
PA1 if(X){M=N+3;} R(N):R(X) Xe. . .:Y= : APCK,T) X Y
if(Y){K=3+3;} |R(J) —R() Y X

R(X):read X W(X):writeX P(X):persistX P:persisted U: unpersisted
cd . dd)
E1 — E2: E1 is control dependent on E2 E1 — E2: E1 is data dependent on E2

hb
E1 — E2: E1 should happen before E2 AP(X,Y): X and Y persisted atomically

Table 2. The inference rules PO1-P03 are for persistence ordering
likely-correctness conditions and PA1 is for persistence atomicity.

105

(PO1) A data dependency implies a persistence order-
ing. Consider the code “Y=X+1” where the write of Y is data-

dependent on the read of X (which we denote W(Y) E>R(X)).
From the data dependency, we infer a PO condition that
for another code region where X and Y are updated, the de-
veloper would want X to be persisted before updating Y (i.e.,

P(X) E>W(Y) where b, stands for happens-before). Other-
wise, she may update Y based on “unpersisted” X, leading
to an inconsistent state. Based on the reasoning, P01 in Ta-
ble 2 says: for two NVM locations X and Y, if we find a Hint

Wy E>R(X), we infer a likely PO condition P(X) ﬂW(Y).
We later test an NVM state that violates the PO condition in
which Y is persisted, but X is not.

(PO2) A control dependency implies a persistence or-
dering. Based on the same rationale, we infer another
PO condition from the control dependency as well: e.g.,
“i£(X) Y=1". More formally, P02 says: for two NVM locations

X and Y, if we find a Hint W(Y) gR (X), we infer a likely PO

condition P(X) LR (Y). Then we test a state violating the PO
condition where only Y is persisted.

(PO3) A guarded read implies a persistence ordering,.
As discussed in §3.1.1, guarded protection is a common NVM
programming pattern. It achieves the atomicity of data us-
ing the writer-side persistence ordering and the reader-side
guarded read. Based on this observation, if we see a guarded
read pattern at a reader side, we infer a PO condition at a
writer side. In other words, P03 says: for two NVM locations

d
X and Y, if we find a Hint R(Y) £—>R(X), we infer a Likely PO
hb
Condition P(Y) —W(X). We note that here X is a guardian in

the guarded read pattern (e.g., token in Figure 1) and thus
it should be persisted last (after key and value). We then
validate an NVM state violating the condition such that X is
persisted but Y is not.

(PA1) Guardian implies persistence atomicity. As in
the P03 likely-correctness condition, we can find a set of
guardians: e.g., token[j] and token[k] in Figure 1. A pro-
gram state could be inconsistent if all the guardians are not
updated atomically — no one guards the guardians. Based
on this observation, we infer a PA likely-correctness condi-
tion such that two or more guardians should be atomically
updated. PA1 says: for two guardians X and Y from P03, we
infer the Likely PA Condition AP(X,Y) that X and Y should
be atomically persisted. We later test NVM states such that
only one guardian is persisted. This approach allows us to
reduce testing space significantly because we will not test
persistence atomicity for well-guarded NVM data. For exam-
ple, if a program applies the guarded read patterns on key
and value in all places (using token as a guardian), then we
do not test persistence atomicity between them. Given N
guardians, there will be N2 PA1 conditions. To avoid scalabil-
ity issues, when checking a PA1 violation, WITCHER keeps
track of a set of N guardians instead of N? conditions, and
checks if two stores before a fence belong to the set.

4.2.2 Data/Control Dependence Analysis WITCHER per-
forms program dependence analysis to infer likely-correctness

conditions from the source codes and execution traces. WITCHER

first constructs a Program Dependence Graph (PDG) [31, 34,
68] where a node represents a traced instruction, and an edge
represents data or control dependency. Then, WITCHER sim-
plifies the PDG into what we called Persistence Program De-
pendence Graph (PPDG) that captures dependencies between
NVM accesses to make it easy to apply the likely-correctness
condition inference rules. For example, Figure 3(c) shows the
PDG of the trace (b), and (d) shows the PPDG.

WITCHER uses a mix of static and dynamic trace analysis
to construct a PDG. When instrumenting the source code for
tracing (§4.1), it performs static analysis to capture register-
level data and control dependency. Then it extracts memory-
level data dependence by analyzing memory-level data-flow
in the collected trace. This dynamic memory-level data de-
pendency analysis improves PDG’s precision compared to
static-only analysis, which suffers from the imprecision of
pointer analysis. The static instruction IDs (binary address)
are used to map static and dynamic information.

WITCHER converts a PDG to a PPDG as follows. Initially,
the PPDG has only (gray) NVM nodes. WITCHER traverses
the PDG from one NVM node to another NVM node. If there
is at least one control-flow edge along the path, it adds a
control-flow edge in the PPDG. If a path includes only data-
flow edges, it adds a data-flow edge in the PPDG. No path
implies no dependency.

106

Given the PPDG, WITCHER then applies the inference
rules in Table 2. For each edge and two nodes in the PPDG,
WirTCcHER considers the type of edge (control vs. data) and
the type of instructions (store vs. load). When WITCHER
finds a Hint, it records the corresponding Likely-correctness
Condition. For example, the PPDG in Figure 3(d) shows that

d
R(key) C—>R(token). Based on P03, we infer the PO condi-

tion I1: P(key) HW(token) in (e). Similarly, we can infer
the PO conditions I2 and I3. Moreover, as token and key are
guardians for guarded reads, based on PA1, we infer the PA
condition I4: AP(token,key).

4.3 Generating Crash NVM Images

The next step is to generate a set of crash NVM images®
that violate the likely-correctness conditions. Later in §4.4,
we will describe how WITCHER loads these NVM images
and uses output equivalence checking to validate if a likely-
correctness condition violation is a true bug or not.

At a high level, WITCHER generates crash NVM images
as follows. WITCHER takes as input the same trace used to
collect likely-correctness conditions and performs cache and
NVM simulations along the trace. During the simulation,
WITCHER cross-checks if there is any violation of likely-
correctness conditions. Each violating NVM state forms a
crash NVM image to test. WITCHER produces a set of crash
NVM images for further validation.

4.3.1 Simulating Cache and NVM States The goal of
the cache/NVM simulations is to generate only feasible NVM
states that violate likely-correctness conditions but still obey
the semantics of a persistence control at a cache line granular-
ity (e.g., the effects of a flush instruction). Starting from the
empty cache and NVM states, WITCHER simulates the effects
of store, flush, and fence instructions along the trace while
honoring the memory (consistency) model of a processor.
In particular, WITCHER supports Intel’s x86-64 architecture
model, as in Yat [52]. The following two rules are, in par-
ticular, relevant to the cache/NVM simulations: (1) A fence
instruction guarantees that all the prior flush-ed stores are
persisted. (2) A processor does not reorder two store instruc-
tions in the same cache line (following the x86-TSO memory
consistency model [42, 78]).

Consider the trace of Level Hashing’s level_insert code
in Figure 3(f). After simulating the first three store instruc-
tions (TID 200-202), there could be multiple valid cache/NVM
states. For example, the data “k” for key could either remain
in a cache (unpersisted) or could be evicted (persisted). The
same is true for the val and token. However, after finishing
the execution of the last fence instruction (TID 205), key and
val are guaranteed to be persisted (due to flush and fence).
Still, token could be either unpersisted or persisted.

3In PMDK, an NVM image is a regular file containing an NVM heap state
created, loaded, and closed by PMDK APIs [40].

4.3.2 Detecting Likely-Correctness Condition Viola-
tions During the simulation, WITcHER checks if there could
be an NVM state that violates a likely-correctness condition
before executing each fence instruction because the fence
ensures a persistent state change. WITCHER considers all pos-
sible persisted/unpersisted states while honoring the above
cache/NVM simulation rules.

Consider the trace of Level Hashing’s level_insert code
in Figure 3(f) again. Before we execute the last fence in-
struction (TID 205), we check the four likely-correctness
conditions against the trace as shown in (e). For instance,

I1 says that P(key) E>W(token). The state violating the PO
condition is the one that token is persisted, but key is not.
We check if this PO violation is feasible in this code region
(before the fence). The answer is yes — a program crashes
between the TID 202 store and the TID 203 flush instruc-
tions, and the cache line for token is evicted (persisted) but
not for key and val (unpersisted). This forms the first crash
NVM image IMGL in (g). Similarly, we can find that ING1 is
also the state that I3 and 14 are violated. We can also find
the second INMG2 in (g) violating I2 and I4.

Each crash NVM image is indeed represented as a pair of a
fence ID and a set of store IDs, which specifies where to crash
and which stores to be persisted, respectively. WITCHER re-
peats the process along the trace and generates a set of crash
NVM images that will be validated in the next step.

4.4 Output Equivalence Checking

WITCHER validates the crash NVM images violating likely-
correctness conditions and detects crash consistency bugs
using output equivalence checking. In particular, WITCHER
focuses on testing durable linearizability [44]. That is, a crash-
consistent NVM program should behave as if the operation
where the crash occurred is either fully executed (commit-
ted) or not at all executed (rolled back). Thus, the program
resumed from a crash NVM image should produce the same
output as one of these two committed or rolled-back execu-
tions, which we call oracles.

Consider the example in Figure 3 again. Using the test case
insert(k,v0), delete(k,v0), insert(k,v1), and query (k)
in (a), we analyzed the trace of the third insert(k,v1) op-
eration in (f) and generated two crash NVM images in (g).
The first IMG1 reflects an NVM state that the first two oper-
ations, insert(k,v®) and delete(k,v®), are correctly per-
formed, and the program crashes in the middle of the third
insert(k,v1) where only token is persisted, and key and
value remain unpersisted — i.e., IMG1 has the old value v®0.

WITCHER generates two oracles to compare. The first
oracle reflects an execution where the crashed operation
is committed - thus we run the test case insert(k,v®),
delete(k,v®), insert(k,vl), and query(k) (no crash) and
records v1 (the new value) as the output of query (k). The
second oracle mimics an execution where the crashed oper-
ation is rolled back — we run the same test case without the

107

third insert(k,v1) and log null as the output of query (k).
Altogether, the oracles say that the correct output of the last
query (k) is either v1 or null.

WITCHER uses the same test cases (used for tracing and
inference) for output equivalence checking. WITCHER loads a
crash NVM image, runs a recovery code (if it exists), executes
the rest of the test cases, records their outputs, and compares
them with the oracles. For example with IMG1, query (k) re-
turns the old value v@ (as neither the deletion of k nor the
insertion of new value v1 was persisted) - WITCHER detects
the mismatch and reports the test case and the crash NVM
image information (the crash location as the fence TID, and
the persistence state as the persisted store ID). On the other
hand, a similar analysis with the second ING2 shows that
the output (null) matches the oracles, so WITCHER does not
report it as correctness bugs.

One key benefit of output equivalence checking is that all
the reported cases indeed indicate buggy inconsistent states
(no false positives). Nonetheless, many cases may share the
same root cause: e.g., a bug in insert operation may repeat-
edly appear in a trace if the test case has many insert calls.
To help programmers analyze the root causes, WITCHER clus-
ters the bug reports according to operation type (e.g., insert,
delete) and execution path (a sequence of basic blocks) that
appeared in the trace. We found that our clustering scheme
significantly facilitates the root cause analysis. After one
root cause is found, reasoning about the redundant cases
along the same program path is relatively simpler. Multiple
clusters may share the same root cause.

4.5 Performance Bug Detection

WrTcHER detects the following performance bugs based on
trace-based cache/NVM simulation. WITCHER reports an un-
persisted performance bug if a store still remains in the cache
(not persisted) at the end of simulation yet it passes an output
equivalence checking. When simulating a flush instruction,
WITCHER reports an extra flush performance bug if all prior
stores have already been flushed by prior flush instructions.
When simulating a fence instruction, WITCHER reports an
extra fence performance bug if there are no preceding flush
instructions. For transactional NVM programs, WITCHER re-
ports an extra logging performance bug if a memory region
or its subset has already been logged by preceding logging
operation in the same transaction.

5 Discussion
5.1 Testing Non-Key-value Store NVM Programs

The current WITCHER prototype is designed to test NVM-
backed key-value stores in which (1) the granularity of “op-
eration” and programming interfaces are well known (e.g.,
insert, delete, etc.); and (2) durable linearizability is used as a
correctness criterion. Testing non-key-value NVM programs
requires a user to define its own operation granularity and

create a deterministic test case for output equivalence check-
ing. For instance, NVM-based file systems may use POSIX
file I/O interfaces. Besides durable linearizability, WITCHER
can be extended for other correctness criteria: e.g., buffered
durable linearizability [44], and strict serializability for trans-
actional programs [73]. These criteria produce different sets
of oracles to compare during output equivalence checking.

5.2 Testing Multi-threaded NVM Programs

WITCHER supports a limited form of testing for multi-threaded
NVM programs. When testing multi-threaded programs,

likely-correctness conditions can still be inferred with no

modification. However, output equivalence checking requires

two special considerations. First, the test case used for out-
put equivalence checking should remain deterministic. This

implies that the “prefix” test case before a crash is simu-
lated during concurrent executions should be sequential (and

produce deterministic outputs). Second, output equivalence

checking should consider more oracles for multi-threaded

cases. Each per-thread operation has two legal states (all or

nothing), and we also need to consider different permuta-
tions of a linearization order. This implies that the cost of
testing increases super-linearly. WITCHER focuses on prun-
ing the NVM state space in a systematic manner, and we

leave thread-interleaving space reduction as future work.

6 Implementation

We built tracing and program dependency analysis based on
Giri [76], a dynamic program slicing tool implemented in
LLVM [14]. Our Giri modification comprises around 3,600
lines of C++ code. Other WITCHER components are written
in 4,400 lines of Python code. The WITCHER prototype is
available at https://github.com/cosmoss-vt/witcher.

Our current prototype supports an NVM program built
on PMDK 1libpmem or 1ibpmemobj libraries to create/load an
NVM image from/to disk. To ensure the virtual address of
mmap-ed NVM heap are the same across different executions,
we set PMEM_MMAP_HINT environment variable [41]. WITCHER
runs PPDG construction, crashed NVM image generation,
and output equivalence checking in parallel.

To support output equivalence checking, WITCHER pro-
vides a template driver with placeholders for test program ini-
tialization, recovery, and operations (e.g., lookup/insert/delete).
Note that users do not need to specify the correct output
(e.g., E_NOTFOUND v.s. NULL) because WITCHER checks if the
test and oracle executions produce the same outputs.

7 Evaluation
7.1 Evaluation Methodology

Tested NVM programs. We evaluate WiTcHER with four
groups of 20 (in total) real-world NVM-backed key-value
stores (persistent indexes) (Table 3). The first group includes
five highly optimized persistent key-value indexes, which are
the backbone of many key-value stores and storage systems.

108

o . . . Core Concu-
Application Version Lib Design NVM Construct | rrency

WOART [53] 5b4cf3e | PMDK v1.8 LL radix tree ST
NVM ‘WORT [53] 5b4cf3e | PMDK v1.8 LL radix tree ST
KV Fast Fair [37] c86f5fb | PMDK v1.8 LL B+ tree LB
Index Level Hash [88] 28eca31 | PMDK v1.8 LL hash table ST
CCEH [65] d53b336 | PMDK v1.8 LL hash table LB
P-ART [54] 5bdcf3e | PMDK v1.8 LL radix tree LB
P-BwTree [54] 5b4cf3e | PMDK v1.8 LL B+ tree LF
P-CLHT [54] 5bdcf3e | PMDK v1.8 LL hash table LB
RECIPE P-CLHT-Aga [54] 53923cf | PMDK v1.8 LL hash table LB
P-CLHT-Aga-TX [54] | 53923cf | PMDK v1.8 TX hash table LB
P-Hot [54] 5b4cf3e | PMDK v1.8 LL trie LB
P-Masstree [54] 5bdcf3e | PMDK v1.8 LL B tree + trie LB
B-Tree v1.4 PMDK v1.8 TX B tree ST
C-Tree v14 PMDK v1.8 TX crit-bit tree ST
PMDK RB-Tree v14 PMDK v1.8 TX red-black tree ST
RB-Tree-Aga v0.4 PMDK v1.8 TX red-black tree ST
Hashmap-TX v1.4 PMDK v1.8 TX hash table ST
Hashmap-atomic v1.4 PMDK v1.8 LL hash table ST

Server ‘ Memcached ‘ 8f121f6 ‘ PMDK v1.8 ‘ LL ‘ hash table ‘ LB ‘

‘ Redis ‘ v3.2 ‘ PMDK v1.8 ‘ TX ‘ hash table ‘ ST ‘

LL: low-level persistence primitives TX: transaction
ST: single-threaded LB: lock-based LF: lock-free

Table 3. The description of tested NVM programs.

For high performance, they all have their own crash consis-
tency mechanism using low-level (LL) persistence primitives
such as flush and fence instructions. For example, FAST-
FAIR [37] incorporates inconsistency tolerable design where
a naive crash consistency bug detection approach would
lead to false positives. The second group includes seven con-
current persistent indexes converted by RECIPE [54]. We
used three different versions/configurations of P-CLHT to
compare with Agamotto [67]. Similar to the first group, they
implement index-specific custom crash consistency logic
using low-level primitives for performance (except for P-
CLHT-Aga-TX using PMDK transaction). The third group
includes six (example) persistent indexes in PMDK. They
used PMDK’s low-level (LL) or transactional (TX) persis-
tence programming model. We used two versions of RB-tree
for the comparison with Agamotto. The last group includes
PMDK-based Memcached and Redis using PMDK’s LL and TX
persistence APIs, respectively. We also note that Memcached
and Redis maintain only a part of its application state in
NVM as a persistent hash table, which turns out to be much
simpler in design, compared to the other tested KV indexes.
All tested applications use PMDK library (1ibpmemobj)
for persistent memory allocation or transaction. For some
applications that originally used a volatile memory allocator
to emulate NVM using DRAM, we modified the code to use
the PMDK memory allocator. We did not add or remove
any persistence primitives, nor introduce additional memory
operations, which may potentially affect the bug detection
evaluation. WITCHER traces and analyzes both applications
and PMDK libraries such as persistence heap allocation and
transactional undo logging logics.
Test cases. WITCHER requires a deterministic test case such
that it produces the same output for a given input for output
equivalence checking (§3.1.2). Any deterministic test case
with good code coverage would suffice. We leave a smarter
test case generation (e.g., fuzzing) as future work, and instead
used random test case generation for well-known key-value

https://github.com/cosmoss-vt/witcher

Name (Total #Bugs) | Bug ID | New Code Type Description Impact Fix strategy
libpmemobj (1) 1 v memblock.c:1337 C-O Incorrect persistence order in allocation Inconsistent structure persistence reorder [8]
WOART (1) 2 v woart.c:727 C-A Atomicity in node split Inconsistent structure inconsistency-recoverable design
FAST-FAIR (4) 3 v’ btree.h:224 C-O Missing persistence primitives Lost key-value add persistence primitives

4 v/ btree.h:213 C-A Partial inconsistency is never recovered Inconsistent structure inconsistency-recoverable design

5 x btree.h:576 C-A Atomicity in node splitting Inconsistent structure logging/transaction

6 X btreeh:299 C-A Atomicity in node merge Inconsistent structure logging/transaction
Level Hashing (17) 7 v level_hashing.c:492 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]

8 V' level_hashing.c:507 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]

9 V' level_hashing.c:417 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]

10 V' level_hashing.c:610 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]

11 V' level_hashing.c:616 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]

12 V' level_hashing.c:657 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]

13 V' level_hashing.c:677 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]

14 v level_hashing.c:545 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]

15 V' level_hashing.c:560 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]

16 V' level_hashing.c:445 C-O Incorrect persistence order Unexpected key-value persistence reorder [5]

17 V' level_hashing.c:112 C-A Atomicity in rehashing Inconsistent structure logging/transaction

18 V' level_hashing.c:228 C-A Atomicity in rehashing Inconsistent structure logging/transaction

19 V' level_hashing.c:609 C-A Atomicity between two metadata Duplicated key-value inconsistency-tolerable design

20 V' level_hashing.c:665 C-A Atomicity between two metadata Duplicated key-value inconsistency-tolerable design

21 v level_hashing.c:685 C-A Atomicity between two metadata Duplicated key-value inconsistency-tolerable design

22 V' level_hashing.c:416 C-A Atomicity between two metadata Lost key-value merge to word size [5]

23 V' level_hashing.c:444 C-A Atomicity between two metadata Lost key-value merge to word size [5]
CCEH (2) 24 x CCEH_MSB.cpp:103 C-A Atomicity in rehashing Inconsistent structure inconsistency-recoverable design

25 v CCEH_MSB.cpp:29 C-A Partial inconsistency is never recovered Unexpected op failure inconsistency-recoverable design
P-ART (2) 26 v Ni6.cpp:15 C-A Atomicity between metadata and key-value Inconsistent structure inconsistency-tolerable design [11]

27 v Nd.cpp:17 C-A Atomicity between metadata and key-value Inconsistent structure inconsistency-tolerable design [11]
P-BwTree (2) 28 v’ bwtreeh:2012 C-O Missing persistence primitives Inconsistent structure add persistence primitives

29 v bwtree.h:2369 C-O Missing persistence primitives Inconsistent structure add persistence primitives
P-CLHT (1) 30 v clht_lb_res.c:166 C-O Missing persistence primitives Lost key-value add persistence primitives [12]
P-CLHT-Aga (3) 31 v clht_Ib_res.c:177 C-O Missing persistence primitives Lost key-value add persistence primitives

32 v clht_Ib_res.c:578 C-O Missing persistence primitives Lost key-value add persistence primitives

33 x clht_lb_res.c:583 C-O Missing persistence primitives Lost key-value add persistence primitives
P-CLHT-Aga-TX (2) 34 x clht_Ib_res.c:559 C-O Missing persistence primitives Lost key-value add persistence primitives

35 x clht_lb_res.c:583 C-O Missing persistence primitives Lost key-value add persistence primitives
P-HOT (3) 36 v TwoEntriesNode.hpp:30 C-O Missing persistence primitives Inconsistent structure add persistence primitives [12]

37 v HOTRowexNode.hpp:315 C-O Missing persistence primitives Inconsistent structure add persistence primitives [12]

38 v/ HOTRowex.hpp:270 C-O Missing persistence primitives Inconsistent structure add persistence primitives [12]
P-Masstree (1) 39 v/ masstree h:1378 C-A Atomicity in node splitting Inconsistent structure logging/transaction
B-Tree (1) 40 X btree_map.c:201 C-A Missing logging in a transaction Inconsistent structure add logging
RB-Tree (1) 41 X rbtree_map.c:417 C-A Missing logging in a transaction Inconsistent structure add logging
RB-TreeAga (2) 42 X rbtree_map.c:174 C-A Missing logging in a transaction Inconsistent structure add logging

43 X rbtree_map.c:355 C-A Missing logging in a transaction Inconsistent structure add logging
Hashmap-TX (1) 44 V' hashmap_tx.c:281 C-O Use-after-free Unexpected op failure copy before free
Hashmap-atomic (2) 45 x hashmap_atomic.c:129 C-A Atomicity when creating hashmap Inconsistent structure logging/transaction

46 v/ hashmap_atomic.c:198 C-A Atomicity when assigin pool id and offset Inconsistent structure inconsistency-recoverable design
Memcached(1) 47 x items.c:538 C-O Missing persistence primitives Inconsistent structure add persistence primitives

NOTE: C-O: persistence order correctness bug

C-A: persistence atomicity correctness bug

Table 4. List of correctness bugs discovered by WITcHER. All 47 bugs have been confirmed by authors or existing tools, and 36 of 47 bugs
are new. There are 25 persistence ordering bugs and 22 persistence atomicity bugs. One bug (ID 1) is in the PMDK library.

interfaces such as insert, delete, update, query, and scan.
WiTcHER randomly generates a list of operations, keys, and
values. For operation parameters, to make some dependent
operations more meaningful, we assign a higher probability
to (1) generate an unused key for insert; and (2) to generate
a used key for the other operations — delete, update, query,
and scan — which work on existing keys.

We run the NVM programs with a test case consisting of
2,000 randomly generated operations. We found that 2,000
operations are large enough to achieve a reasonable and
stable code coverage (50%-80%) for our tested NVM pro-
grams. Missing code coverages are due to unused features
(e.g., garbage collection) and debugging codes.
Experimental setup. We ran all experiments on a 64-bit
Fedora 29 machine with two 16-core Intel Xeon Gold 5218
processors (2.30GHz), 192 GB DRAM, and 512 GB NVM.

109

7.2 Detected Correctness Bugs

WITCHER detected 47 (36 new) crash consistency bugs from
18 programs. There were 25 persistence ordering bugs and
22 persistence atomicity bugs. All the bugs were confirmed
by the developers. Table 4 presents the source code locations,
impacts, and fix strategies of the detected correctness bugs.

The detected bugs have diverse impacts: lost, unexpected,
duplicated key-value pairs; unexpected operation failure; and
inconsistent structure. For example, a crash in the middle of
rehashing operation in Level Hashing (Bug IDs 17 and 18 in
Table 4) may lead to lost, unexpected, duplicated key-value
pairs since the metadata is not consistent with the stored
key-value pairs. In FAST-FAIR (Bug ID 5), if a crash happens
while splitting the root node and right before setting the
new root node, the B+tree will be in an illegal state: the root
node connects to a sibling node. Any further operation on
the B+tree will lead to a program crash.

Correctness Performence Likely-Correctness Cond’ Inference Output Equivalence Checking
Name co | ca P-U | P-EFL | P-EFE | P-EL Total || # ord.el.'ing # ator.n.icity exef:ution #&j&h # 1:::53:” # exef:ution
conditions | conditions time . . cluster time
images | mismatch
Library libpmemobj 1 0 5 0 0 0 6 - - - - -
WOART 0 1 1 2 3 0 7 7601 1126 31m29s 31859 26 8 7m53s
NVM WORT 0 0 1 1 0 0 2 15975 3423 26m28s 56265 1 1 9mlds
KV Fast Fair 1 3 5 0 1 0 10(2) 413232 1201 22mé6s 59644 46878 104 20m25s
Index Level Hash 10 7 11 12 0 0 40 28080 1708 1h2m 55114 45263 33 1h32m
CCEH 0 2 8 1 1 0 12(1) 8935 1839 28m48s 19141 860 5 59m29s
P-ART 0 2 9 0 1 0 12 4155 3570 3h53m 44243 41 B 11m37s
P-BwTree 2 0 1 0 1 0 4 32945 5333 1h24m 38572 4826 80 1h26m
P-CLHT 1 0 7 0 1 0 9 1580 364 1h23m 10370 476 3 27m27s
RECIPE P-CLHT-Aga 3 0 10 0 1 0 14(1) 8090 1084 55m49s 39918 248 5 1h43m
P-CLHT-Aga-TX 2 0 10 4 1 2 19(17) 4358 477 2h 27949 242 5 49m25s
P-Hot 3 0 0 0 4 0 7 20132 16403 5h10m 96295 905 155 21m35s
P-Masstree 0 1 5 0 1 0 7 16139 2983 48m27s 115590 142 10 25m6s
B-Tree 0 1 0 0 0 5 6(6) 1148 131 1h4m 114161 23255 46 20m15s
C-Tree 0 0 0 0 0 0 0 9757 705 2h20m 30113 0 0 20m38s
PMDK RB-Tree 0 1 0 0 0 0 1(1) 15342 726 1h24m 376891 5976 64 1h12s
RB-Tree-Aga 0 2 0 0 0 13 15(15) 16188 725 1h23m 386252 82801 219 2h29m
Hashmap-TX 1 0 0 0 0 0 1 8991 802 2h 30364 469 11 21m33s
Hashmap-atomic 0 2 0 0 0 0 2(1) 7931 1078 2h 30068 272 8 1h22m
Server || Memeached [1 [0 [T 29 | 1 [o [o [31(12) [11089 [2746 [thizm [| 11348 | 0 [0 [1h2om |
\ Redis o T o o | o [o [o [o | 77187 | 1270 [6h49m | 260526 | 0 [o [3mm |
\ Total [25(3) [22(8) [[102(17) | 21(8) [15(2) | 20(18) [205(56) | 639455 [47694 | 36h37m [[1834683 | 212681 | 765 | 18h58m ||

C-O: persistence order correctness bug C-A: persistence atomicity correctness bug

(#): number of known bugs

P-U: unpersisted performance bug P-EFL: extra flush performance bug P-EFE: extra fence performance bug P-EL: extra logging performance bug

Table 5. The tested NVM programs, the number of detected bugs, and the detailed statistics of WiTCHER bug finding.

Case studies. WITCHER detects many critical and sophisti-
cated bugs. For instance, Bug ID 1 was a persistence ordering
bug in PMDK’s persistent pool allocator pmemobj_tx_zalloc,
classified as “Priority 1: showstopper” [8]. The bug did not
manifest in other TX-PMDK applications as it resides in a
code path that requires a large-size object allocation. As an-
other example, the bug in CLHT (Bug ID 30) only occurs
when a program crashes at a specific moment during rehash-
ing while leaving a specific set of stores unpersisted.

Fixing persistence ordering bugs. WITCHER detected 25
persistence ordering bugs in total. 14 persistence ordering
bugs occurred because developers did not add persistence
primitives (flush/fence) or passed incorrect addresses as
parameters. Fixing these bugs is straightforward. The rest
of the 11 persistence ordering bugs had persistence primi-
tives, but they persisted multiple stores in an incorrect order.
Fixing them requires reordering persistence primitives. For
example, Bug ID 1 in PMDK’s pool allocator and Bug ID 7 in
level_insert (Figure 1(b)) were fixed by reordering source
codes [5, 8].

Fixing persistence atomicity bugs. WITCHER detected 22
persistence atomicity bugs in total. Four cases (Bug IDs 40-43)
were a missing logging problem in transactional programs.
Fixing is relatively trivial — add logging. For the rest of the
18 bugs appearing in low-level NVM programs, all of them
indeed required design or implementation-level changes. We
observed the following four fixing strategies: (1) To merge
multiple writes into one word-size write to guarantee atomic-
ity [42]. (2) To make program crash-inconsistency-tolerable in
which an operation that notices any inconsistent state fixes
it on behalf of another operation. This is similar to the con-
current data structure’s helping mechanism [19], where an

110

operation started by one thread but failed is later completed
by another thread. (3) To make program crash-inconsistency-
recoverable. This solution introduces a recovery code that is
executed after a crash and fixes any observed inconsistency.
(4) To use logging/transaction techniques.

7.3 Detected Crash Performance Bugs

Table 5 shows that WITCHER detected 158 performance bugs
from PMDK library and tested applications in total and 113
of them are new bugs. WITCHER detected 102 unpersisted
performance bugs; 21 extra flush performance bugs; 15 extra
fence performance bugs; and 20 extra logging performance
bugs, as classified in §2.2.

7.4 Statistics of WITcHER Bug Finding

Table 5 also presents the detailed statistics of WITCHER. Across
20 NVM programs, when tested with 2,000 operations, WITCHER
infers in total 639K (32K on average) likely-ordering condi-
tions and 48K (2.4K) likely-atomicity conditions. WITCHER
generated 1835K (92K) crash NVM images, 213K (11K) of
which failed output equivalence checking.

For correctness bugs, WITCHER finally generated 765 bug
reports clustered by operation type and execution path (§4.4).
To analyze the root cause of the correctness bugs and to com-
municate with the developers, we investigated all generated
bug reports. WITCHER provides sufficient information for
root cause analysis, including execution trace, crash location,
persisted and unpersisted writes, and a crash NVM image,
which can be loaded for further gdb debugging. As the third-
party tester, we could identify the root causes of detected
correctness bugs from the WITCHER’s reports, manually but
guided by gdb-based debugging. Multiple clusters shared the

Level Hashing FAST-FAIR CCEH

1012 1012

109

Figure 4. Test space comparison for 2,000 random operations.

same root causes, and we reported and confirmed 25 persis-
tence ordering bugs and 22 persistence atomicity bugs. For
performance bugs, WITCHER provides execution traces and
locations of unpersist stores and extra flush/fence/logging.
Root cause analysis of performance bugs is much simpler
since it does not require crash simulation.

Table 5 reports testing time. Inferring likely-correctness
conditions took a few minutes to seven hours. Output equiv-
alence checking took a few minutes to three hours, whose
total cost is proportional to the number of tested crash NVM
images and the cost of each test run. Testing Memcached and
Redis based on live networking generally takes longer than
the others. Note that WITCHER systematically explores and
validates feasible NVM states (one by one) and thus it may
take longer than other dynamic tools (e.g., PMTest) testing
one execution, yet it is much faster than other exhaustive
testing tools (e.g., Yat) thanks to pruning based on likely-
correctness conditions. We make the comparison in the fol-
lowing sections.

7.5 Scalability and Comparison with Yat

This section evaluates how effectively our likely-correctness
condition-based approach can prune the testing space, and

thus improve scalability. First, we simulate the existing exhaustive-

testing-based tool Yat [52] and compare the number of crash
states that Yat will validate using the same trace with 2,000
random operations. Figure 4 shows the representative results
for Level Hashing, FAST-FAIR, and CCEH programs. The test
space of Yat is several orders larger than WiTcHER. Sudden
spikes happen in Yat when there is a rehashing in Level Hash-
ing and CCEH or a node split/merge in FAST-FAIR. WITCHER
only tests when there is a violation of likely-correctness con-
ditions, significantly reducing the number of test cases (yet
detecting many bugs).

Second, Table 5 shows that with likely-correctness con-
ditions, WITCHER tested 19K-60K NVM states for the three
programs. Ideally, we wanted to test the entire NVM states
and check if there is any bug that WITCHER may miss. How-
ever, as shown in Yat simulation, the NVM state space is
too huge to explore them all. Alternatively, we tested 100
million randomly chosen NVM states (without considering
likely-correctness conditions), which is 1677x-5224X larger
NVM test space. Running 100M cases costs around one week
for each program. The results show that the random 100M

111

cases can only detect one or two of the bugs that WiTCHER
detected, yet there was no new bug. Without a full search,
we cannot conclude that likely-correctness conditions are
sound. However, the result shows that random pruning does
not work, and our approach effectively detects many bugs.

7.6 Bug Detection Effectiveness Comparison

We compared the correctness and performance bugs detected
by WrTcHER, Agamotto, PMTest, and XFDetector. Making
an apples-to-apples comparison among testing tools is hard
with different test cases, testing resources and budgets, bug
targets, etc. Therefore, we focus on checking if WITCHER can
detect the bugs that the others have found. In §7.2 and §7.3,
we reported that WITCHER discovered 36 new correctness
and 113 new performance bugs.

Agamotto. We tested Agamotto with the same test cases
(2,000 operations) used to evaluate WITCHER. We set the
memory resource as 32GB and the time limit as 24 hours for
each Agamotto test. To detect PMDK transaction bugs, we
enabled Agtamotto’s custom checker. We evaluated B-Tree,
RB-Tree, Hashmap-atomic, P-CLHT, Memcached and Redis
including PMDK libraries. We used a modified version of
Agamotto from the paper. To execute the same test cases, we
asked the authors to support non-symbolic client connec-
tions for Memcached and Redis. We also asked them to fix a
bug in the bug reporting logic. The modified Agamotto in
our experiments found more bugs than the original paper.
For correctness bugs, WITCHER detected all seven bugs
detected by Agamotto. Agamotto missed two bugs (Bug IDs 1
and 46) due to the lack of application-specific oracles, show-
ing the benefits of output equivalence checking. For perfor-
mance bugs, both discovered 61 bugs in common. WITCHER
detected 9 unique bugs and Agamoto found 43 bugs. Recall
that the performance bug detection depends on tested pro-
gram paths. The result implies that WITCHER and Agamotto
explored different program paths, showing the pros and cons
of (guided) symbolic execution by Agamotto and trace-based
approach by WITCHER. 43 Agamotto-unique performance
bugs were found in PMDK libraries that Agamotto’s symbolic
execution did explore but WiTcHER did not.
PMTest and XFDetector. We also compared WITCHER
with two annotation-based approaches. Seven programs
were tested by WiTcHER, PMTest, and XFDetector in com-
mon: B-Tree, C-Tree, RB-Tree, Hashmap-TX, Hashmap-atomic,
Memcached and Redis. For performance bugs, WITCHER de-
tects the one bug that PMTest detected. XFDetector does
not detect new performance bugs. For correctness bugs,
WirTCcHER detects three out of four bugs PMTest/XFDetector
found in B-Tree (Bug ID 40), RB-Tree (Bug ID 41), and Hashmap-
atomic (Bug ID 45). In addition, WITcHER detected three
more new bugs (Bug IDs 1, 44 and 46), which were missed
by PMTest/XFDetector.

WITCHER missed one bug in Redis reported by PMTest
and XFDetector. The bug turns out to be benign. The bug
is in the server initialization code. After allocating a PMDK
root object, Redis initializes the root object to zero “out-
side” of a PMDK transaction. PMTest/XFDetector detects
this unprotected update as a bug. However, this is benign —
it does not lead to an inconsistent state. The root object was
allocated using POBJ_ROOT [9], which already zeroed out the
newly allocated object. Both the old and new values are zero.
Therefore, it does not matter if the new zero update is per-
sisted or not. WITCHER actually detected this store violating
a likely-atomicity condition, and performed output equiva-
lence checking. But it does not show any visible divergence.
This example particularly shows the benefit of our output
equivalence checking, pruning false positives.

Summary. WITCHER is able to detect all the known cor-
rectness bugs and identify new correctness bugs as well.
WITCHER uses application-agnostic rules to find application-
specific correctness bugs. WITCHER detects a new group of
application-specific correctness bugs, which cannot be de-
tected by previous works because of the lack of application-
specific oracles. WITcHER's efficiency could be further im-
proved if integrated with a smart test case generator (e.g.,
fuzzing, symbolic execution), with which new program paths
can be explored, or the same program paths can be achieved
with simpler test cases.

7.7 Testing Non-Key-value Store NVM Programs

We extended WITCHER for testing a persistent array [6] and
a persistent queue [7] from PMDK to demonstrate the fea-
sibility of applying WITCHER to non-key-value NVM pro-
grams. The persistent array supports allocation, reallocation,
deallocation, and print operations. The persistent queue sup-
ports enqueue, dequeue, and print operations. We extended
our template driver to support these non-key-value opera-
tions. For output equivalence checking, WITCHER leverages
outputs from print operations, which list all data in an ar-
ray or a queue. We redirect the output of each operation
to an output file to check if the test and oracle executions
produce the same outputs. Similar to previous experiments,
WITCHER tested them using test cases with randomly gener-
ated 2,000 operations. WITCHER detected one (known) cor-
rectness bug [3] in the persistent array.

8 Related Work

Likely-correctness conditions. Prior works have used a
concept of likely-correctness conditions to detect program
bugs [30, 47, 50, 59, 62, 87], to verify the network [58], and
to identify resource leaks [80]. To the best of our knowledge,
WITCHER is the first work that infers likely-correctness con-
ditions in the context of NVM crash consistency testing.

Output equivalence checking. Burckhardt et al. [18] and
Pradel et al. [72] detect thread-safety violations by compar-
ing the concurrent execution to linearizable executions of

112

a test. WITCHER shares a similar idea in the sense that they
all compare an observed execution with “oracles”, but is
uniquely designed to detect NVM crash consistency bugs.

Heuristic-based test space pruning. An iterative con-
text bound [64] or delay bound [29] has been used to (un-
soundly yet effectively) prune the thread-interleaving test
space when testing multithreaded programs. WITCHER uses
likely-correctness conditions to prune the NVM state space.

Crash consistency testing in file systems. There has
been a long line of research in testing and guaranteeing crash
consistency in file systems [20, 21, 33, 48, 63, 75, 79, 84-86].
In-situ model checking approaches such as EXPLODE [85]
and FiSC [86] systematically test every legal action of a
file system. B3 [63] performs exhaustive testing within a
bounded space, which is heuristically decided based on the
bug study of real file systems. In contrast, WITCHER reduces
test space by using inferred likely-correctness conditions.
Feedback-driven File system fuzzers, such as Janus [84] and
Hydra [48], mutate both disk images and file operations to
thoroughly explore file system states.

Crash consistency testing in NVM. Most closely related
bug detection works have been discussed in §3.3. In addition,
PMFuzz [55] proposes a fuzzing technique to generate di-
verse inputs for dynamic NVM bug detectors. These inputs
can be fed into WITCHER (instead of using random test cases).
Hippocrates [66] proposes an automated NVM bug fixing
solution, placing flush and fence instructions at the right
(optimal) positions.

9 Conclusion

We present WITCHER, a systematic crash consistency test-
ing framework for NVM-backed persisted key-value stores.
WrTcHER infers likely-correctness conditions and performs
output equivalence checking to validate their violations. This
approach allows WITCHER to use application-agnostic rules
to find application-specific correctness bugs without manual
annotations, user-provided consistency checker, or exhaus-
tive testing. WITCHER also detects performance bugs during
NVM state simulation.

Acknowledgments

We thank the anonymous reviewers and Donald Porter (our
shepherd) for their insightful comments and feedback. We
thank Sam H. Noh, Vijay Chidambaram, Beomseok Nam, Yu
Hua, Sekwon Lee, Hokeun Cha, Pengfei Zuo, and Intel PMDK
developers for the bug confirmation. We thank Samira Khan,
Baris Kasikei, Brian Demsky, Dong Li, Sihang Liu, Ian Neal,
Hamed Gorjiara, and Bang Di for their help in understanding
and using their bug detectors. This work was supported
by Institute for Information & communications Technology
Promotion (II'TP) grant funded by the Korean government
(MSIT) (No. 2014-3-00035) and in part by National Science
Foundation grant No. CSR-2029720.

References

[1] Argonne National Lab’s Aurora Exascale System.

(17

[18

[19

[20

[21

[22

—

—

]

[t

—

—

URL:
https://www.intel.com/content/www/us/en/customer-spotlight/
stories/argonne-aurora-customer-story.html.

Available first on Google Cloud: Intel Optane DC Persistent Memory.
URL: https://cloud.google.com/blog/topics/partners/available-first-on-
google-cloud_intel-optane-dc-persistent-memory.

Detected correctness bug in the persistent array. URL: https://github.
com/pmem/pmdk/issues/4927.

Key/Value Datastore for Persistent Memory. URL: https://github.com/
pmem/pmemkv.

Level Hashing commit to fix reported bugs.
https://github.com/Pfzuo/Level-Hashing/commit/
5a6f9c111b55b9ae1621dc035d0d3b84a3999¢71.
Persistent array in PMDK. URL: https://github.com/pmem/pmdk/tree/
stable-1.8/src/examples/libpmemobj/array.

Persistent queue in PMDK. URL: https://github.com/pmem/pmdk/
tree/stable-1.8/src/examples/libpmemobj/queue.

PMDK issue to fix reported bug in allocation. URL: https://github.com/
pmem/pmdk/issues/4945.

PMDK Root Object APIs. URL: https://pmem.io/pmdk/manpages/
linux/master/libpmemobj/pmemobj_root.3.

Pmem-Memcached. https://github.com/lenovo/memcached-pmem.

URL:

RECIPE commit to fix reported bugs. URL:
https://github.com/utsaslab/RECIPE/commit/
4b0c27674ca7727195152b5604d71f47c0a0a7a2.
RECIPE commit to fix reported bugs. URL:

https://github.com/utsaslab/RECIPE/commit/
950ae0ea5ed23ce28840615976e03338b943d57a.

Redis v3.2. https://github.com/pmem/redis/tree/3.2-nvml.

The LLVM Compiler Infrastructure. URL: https://llvm.org/.
Anandtech. Intel Launches Optane DIMMs Up To 512GB: Apache Pass
Is Here!, 2018. URL: https://www.anandtech.com/show/12828/intel-
launches-optane-dimms_up-to-512gb-apache-pass-is-here.

Joy Arulraj, Matthew Perron, and Andrew Pavlo. Write-behind Log-
ging. In Proceedings of the 42nd International Conference on Very Large
Data Bases (VLDB), New Delhi, India, March 2016.

Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. Makalu:
Fast recoverable allocation of non-volatile memory. In Proceedings
of the 27th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 677-694, Ams-
terdam, Netherlands, October 2016. ACM.

Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan.
Line-up: a complete and automatic linearizability checker. In Proceed-
ings of the 2010 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 330-340, Toronto, Canada,
June 2010.

Keren Censor-Hillel, Erez Petrank, and Shahar Timnat. Help! In
Proceedings of the 34th ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed Computing (PODC), pages 241-250, Donostia-San
Sebastian, Spain, July 2015.

Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay ileri,
Adam Chlipala, M Frans Kaashoek, and Nickolai Zeldovich. Verifying
a high-performance crash-safe file system using a tree specification.
In Proceedings of the 26th Symposium on Operating Systems Principles,
pages 270-286, 2017.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M Frans
Kaashoek, and Nickolai Zeldovich. Using crash hoare logic for cer-
tifying the fscq file system. In Proceedings of the 25th Symposium on
Operating Systems Principles, pages 1837, 2015.

Shimin Chen and Qin Jin. Persistent B+-trees in Non-volatile Main
Memory. In Proceedings of the 41st International Conference on Very
Large Data Bases (VLDB), Hawaii, USA, September 2015.

113

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. Better i/o through
byte-addressable, persistent memory. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles (SOSP), Big Sky, MT, Octo-
ber 2009.

Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor
Zablotchi. Log-free concurrent data structures. In Proceedings of
the 2018 USENIX Annual Technical Conference (ATC), Boston, MA, July
2018.

Anthony Demeri, Wook-Hee Kim, Madhava Krishnan Ramanathan,
Jaeho Kim, Mohannad Ismail, and Changwoo Min. Poseidon: Safe,
Fast and Scalable Persistent Memory Allocator. In Middleware "20: 21st
International Middleware Conference, Delft, The Netherlands, December
7-11, 2020, pages 207-220. ACM, 2020.

Bang Di, Jiawen Liu, Hao Chen, and Dong Li. Fast, flexible and com-
prehensive bug detection for persistent memory programs extended
abstract. In Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), Virtual, April 2021.

Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen.
Performance and protection in the zofs user-space nvm file system. In
Proceedings of the 27th ACM Symposium on Operating Systems Princi-
ples, SOSP *19, page 478-493, New York, NY, USA, 2019. Association for
Computing Machinery. URL: https://doi.org/10.1145/3341301.3359637,
doi:10.1145/3341301.3359637.

Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System
software for persistent memory. In Proceedings of the 9th European
Conference on Computer Systems (EuroSys), Amsterdam, The Nether-
lands, April 2014.

Michael Emmi, Shaz Qadeer, and Zvonimir Rakamari¢. Delay-bounded
scheduling. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 11, page
411-422, New York, NY, USA, 2011. Association for Computing Machin-
ery. URL: https://doi.org/10.1145/1926385.1926432, doi:10.1145/
1926385.1926432.

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Ben-
jamin Chelf. Bugs As Deviant Behavior: A General Approach to
Inferring Errors in Systems Code. In Proceedings of the 18th ACM Sym-
posium on Operating Systems Principles (SOSP), pages 57-72, Chateau
Lake Louise, Banff, Canada, October 2001.

Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program
dependence graph and its use in optimization. In Proceedings of the
ACM Transactions on Programming Languages and Systems, 1987.
Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. Jaaru: Effi-
ciently model checking persistent memory programs. In Proceedings of
the 26th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), Virtual, April
2021.

Haryadi S. Gunawi, Cindy Rubio-Gonzalez, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dussea, and Ben Liblit. EIO: Error handling is occa-
sionally correct. In Proceedings of the 6th USENLX Conference on File
and Storage Technologies (FAST), pages 14:1-14:16, 2008.

Mary Jean Harrold, Brian Malloy, and Gregg Rothermel. Efficient
construction of program dependence graphs. ACM SIGSOFT Software
Engineering Notes, 18(3):160-170, 1993.

Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. NVRAM-
aware Logging in Transaction Systems. pages 389-400, September
2014.

Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo Seltzer, Tim
Harris, and Steve Byan. Closing the Performance Gap Between Volatile
and Persistent Key-Value Stores Using Cross-Referencing Logs. In
Proceedings of the 2018 USENIX Annual Technical Conference (ATC),
Boston, MA, July 2018.

https://www.intel.com/content/www/us/en/customer-spotlight/stories/argonne-aurora-customer-story.html
https://www.intel.com/content/www/us/en/customer-spotlight/stories/argonne-aurora-customer-story.html
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud_intel-optane-dc-persistent-memory
https://cloud.google.com/blog/topics/partners/available-first-on-google-cloud_intel-optane-dc-persistent-memory
https://github.com/pmem/pmdk/issues/4927
https://github.com/pmem/pmdk/issues/4927
https://github.com/pmem/pmemkv
https://github.com/pmem/pmemkv
https://github.com/Pfzuo/Level-Hashing/commit/5a6f9c111b55b9ae1621dc035d0d3b84a3999c71
https://github.com/Pfzuo/Level-Hashing/commit/5a6f9c111b55b9ae1621dc035d0d3b84a3999c71
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/array
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/array
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/queue
https://github.com/pmem/pmdk/tree/stable-1.8/src/examples/libpmemobj/queue
https://github.com/pmem/pmdk/issues/4945
https://github.com/pmem/pmdk/issues/4945
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/pmemobj_root.3
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/pmemobj_root.3
https://github.com/lenovo/memcached-pmem
https://github.com/utsaslab/RECIPE/commit/4b0c27674ca7727195152b5604d71f47c0a0a7a2
https://github.com/utsaslab/RECIPE/commit/4b0c27674ca7727195152b5604d71f47c0a0a7a2
https://github.com/utsaslab/RECIPE/commit/950ae0ea5ed23ce28840615976e03338b943d57a
https://github.com/utsaslab/RECIPE/commit/950ae0ea5ed23ce28840615976e03338b943d57a
https://github.com/pmem/redis/tree/3.2-nvml
https://llvm.org/
https://www.anandtech.com/show/12828/intel-launches-optane-dimms_up-to-512gb-apache-pass-is-here
https://www.anandtech.com/show/12828/intel-launches-optane-dimms_up-to-512gb-apache-pass-is-here
https://doi.org/10.1145/3341301.3359637
http://dx.doi.org/10.1145/3341301.3359637
https://doi.org/10.1145/1926385.1926432
http://dx.doi.org/10.1145/1926385.1926432
http://dx.doi.org/10.1145/1926385.1926432

(37]

(38]

(39

—

(40

—

(41

—

[42

—

[43

[tr}

[44]

[45

—

[46]

(47]

(48]

(49]

(50]

(51]

(52]

Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.
Endurable Transient Inconsistency in Byte-addressable Persistent B+-
tree. In Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST), pages 187-200, Oakland, California, USA, Febru-
ary 2018.

INTEL. Persistent Memory Development Kit, 2019. URL: http://pmem.
io/.

Intel. pmreorder, 2019. URL: https://pmem.io/pmdk/manpages/linux/
master/pmreorder/pmreorder.1.html.

INTEL. PMDK man page: pmemobj_open, 2020. URL: https://pmem.
io/pmdk/manpages/linux/master/libpmemobj/pmemobj_open.3.

INTEL. PMDK man page: libpmem - persistent memory support library,
2021. URL: https://pmem.io/pmdk/manpages/linux/v1.0/libpmem.3.
html.

Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, 2019. https://software.intel.com/en-us/articles/intel-
sdm.

Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-Atomic
Persistent Memory Updates via JUSTDO Logging. In Proceedings of
the 21st ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Atlanta,
GA, April 2016.

Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. Lineariz-
ability of persistent memory objects under a full-system-crash failure
model. In Proceedings of the 30st International Conference on Distributed
Computing (DISC), pages 313-327, Paris, France, September 2016.

Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder.
Evaluating file system reliability on solid state drives. In Proceedings
of the 2019 USENIX Annual Technical Conference (ATC), pages 783-798,
Renton, WA, July 2019.

Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. Splitfs: reducing software
overhead in file systems for persistent memory. In Proceedings of the
27th ACM Symposium on Operating Systems Principles, pages 494-508,
2019.

Samantha Syeda Khairunnesa, Hoan Anh Nguyen, Tien N. Nguyen,
and Hridesh Rajan. Exploiting implicit beliefs to resolve sparse usage
problem in usage-based specification mining. Proc. ACM Program.
Lang., 1(O0OPSLA), October 2017. URL: https://doi.org/10.1145/3133907,
doi:10.1145/3133907.

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu,
and Taesoo Kim. Finding semantic bugs in file systems with an exten-
sible fuzzing framework. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 147-161, 2019.

Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu, Sanidhya Kashyap,
and Changwoo Min. PACTree: A High Performance Persistent Range
Index Using PAC Guidelines. In SOSP °21: 28th ACM Symposium on
Operating Systems Principles, October 25-28, 2021. ACM, 2021.

Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson
Engler. From uncertainty to belief: Inferring the specification within.
In Proceedings of the 7th symposium on Operating systems design and
implementation, pages 161-176, 2006.

R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony
Demeri, Changwoo Min, and Sudarsun Kannan. Durable Transactional
Memory Can Scale with Timestone. In Proceedings of the 25th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Lausanne, Switzerland,
April 2020.

Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran,
and Jeff Jackson. Yat: A validation framework for persistent mem-
ory software. In Proceedings of the 2014 USENIX Annual Technical
Conference (ATC), Philadelphia, PA, June 2014.

114

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H.
Noh. WORT: Write Optimal Radix Tree for Persistent Memory Storage
Systems. In Proceedings of the 15th USENIX Conference on File and
Storage Technologies (FAST), Santa Clara, California, USA, February—
March 2017.

Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and
Vijay Chidambaram. RECIPE: Converting Concurrent DRAM Indexes
to Persistent-Memory Indexes. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles (SOSP), Ontario, Canada, October
2019.

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. Pmfuzz:
Test case generation for persistent memory programs. In Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual,
April 2021.

Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch,
Aasheesh Kolli, and Samira Khan. Cross-Failure Bug Detection in
Persistent Memory Programs. In Proceedings of the 25th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), page 1187-1202, Lausanne, Switzer-
land, April 2020.

Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Khan.
PMTest: A Fast and Flexible Testing Framework for Persistent Memory
Programs. In Proceedings of the 24th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 411-425, Providence, RI, April 2019.

Nuno P. Lopes, Nikolaj Bjerner, Patrice Godefroid, Karthick Jayaraman,
and George Varghese. Checking beliefs in dynamic networks. In 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 499-512, Oakland, CA, May 2015. USENIX Association.
URL: https://www.usenix.org/conference/nsdi15/technical-sessions/
presentation/lopes.

Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang,
Zhenmin Li, Raluca A. Popa, and Yuanyuan Zhou. Muvi: Auto-
matically inferring multi-variable access correlations and detecting
related semantic and concurrency bugs. In Proceedings of Twenty-
First ACM SIGOPS Symposium on Operating Systems Principles, SOSP
’07, page 103-116, New York, NY, USA, 2007. Association for Com-
puting Machinery. URL: https://doi.org/10.1145/1294261.1294272,
doi:10.1145/1294261.1294272.

Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. Persis-
tent Memcached: Bringing Legacy Code to Byte-Addressable Persistent
Memory. In Proceedings of the 17th Workshop on Hot Topics in Storage
and File Systems, Santa Clara, CA, July 2017.

Micro. 3D XPoint Technology, 2019. URL: https://www.micron.com/
products/advanced-solutions/3d-xpoint-technology.

Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song,
and Taesoo Kim. Cross-checking semantic correctness: The case of
finding file system bugs. In Proceedings of the 25th Symposium on
Operating Systems Principles, pages 361-377, 2015.

Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian
Raju, and Vijay Chidambaram. Finding Crash-Consistency Bugs with
Bounded Black-Box Crash Testing. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
page 33-50, Carlsbad, CA, October 2018.

Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI *07, page 446—-455, New York, NY, USA, 2007.
Association for Computing Machinery. URL: https://doi.org/10.1145/
1250734.1250785, doi:10.1145/1250734.1250785.

Moohyeon Nam, Hokeun Cha, Young-ri Choi, Sam H Noh, and Beom-
seok Nam. Write-Optimized Dynamic Hashing for Persistent Memory.
In Proceedings of the 17th USENLX Conference on File and Storage Tech-
nologies (FAST), Boston, MA, February 2019.

http://pmem.io/
http://pmem.io/
https://pmem.io/pmdk/manpages/linux/master/pmreorder/pmreorder.1.html
https://pmem.io/pmdk/manpages/linux/master/pmreorder/pmreorder.1.html
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/pmemobj_open.3
https://pmem.io/pmdk/manpages/linux/master/libpmemobj/pmemobj_open.3
https://pmem.io/pmdk/manpages/linux/v1.0/libpmem.3.html
https://pmem.io/pmdk/manpages/linux/v1.0/libpmem.3.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://doi.org/10.1145/3133907
http://dx.doi.org/10.1145/3133907
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes
https://doi.org/10.1145/1294261.1294272
http://dx.doi.org/10.1145/1294261.1294272
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1250734.1250785
http://dx.doi.org/10.1145/1250734.1250785

[66]

(67]

(68

—

[69

—

[70

[t

(71

—

(72]

(73]

(74]

(75]

[76]

Ian Neal, Andrew Quinn, and Baris Kasikci. Hippocrates: Healing
persistent memory bugs without doing any harm extended abstract.
In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
Virtual, April 2021.

Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, Si-
mon Peter, and Baris Kasikci. AGAMOTTO: How persistent is your
persistent memory application? In 14th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 20), pages 1047-1064.
USENIX Association, November 2020. URL: https://www.usenix.org/
conference/osdi20/presentation/neal.

Karl J Ottenstein and Linda M Ottenstein. The program dependence
graph in a software development environment. volume 19, pages
177-184. ACM, 1984.

Ismail Oukid, Daniel Booss, Adrien Lespinasse, and Wolfgang Lehner.
On Testing Persistent-memory-based Software. In Proceedings of the
International Workshop on Data Management on New Hardware, pages
5:1-5:7, San Francisco, California, June 2016.

Ismail Oukid, Daniel Booss, Adrien Lespinasse, Wolfgang Lehner,
Thomas Willhalm, and Grégoire Gomes. Memory Management Tech-
niques for Large-scale Persistent-main-memory Systems. In Proceed-
ings of the 43rd International Conference on Very Large Data Bases
(VLDB), TU Munich, Germany, August 2017.

Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and
Wolfgang Lehner. FPTree: A Hybrid SCM-DRAM Persistent and Con-
current B-Tree for Storage Class Memory. In Proceedings of the 2015
ACM SIGMOD/PODS Conference, San Francisco, CA, USA, June 2016.

Michael Pradel and Thomas R. Gross. Fully automatic and precise
detection of thread safety violations. SIGPLAN Not., 47(6):521-530,
June 2012. URL: https://doi.org/10.1145/2345156.2254126, doi: 10.
1145/2345156.2254126.

Azalea Raad, John Wickerson, and Viktor Vafeiadis. Weak persis-
tency semantics from the ground up: Formalising the persistency
semantics of armv8 and transactional models. Proc. ACM Program.
Lang., 3(O0OPSLA), October 2019. URL: https://doi.org/10.1145/3360561,
doi:10.1145/3360561.

Madhava Krishnan Ramanathan, Wook-Hee Kim, Xinwei Fu, Sumit Ku-
mar Monga, Hee Won Lee, Minsung Jang, Ajit Mathew, and Changwoo
Min. TIPS: making volatile index structures persistent with DRAM-
NVMM tiering. In ATC "21: 2021 USENIX Annual Technical Conference,
FJuly 14-16, 2021, pages 773-787. USENIX Association, 2021.

Cindy Rubio-Gonzalez, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-
Dusseau, and Andrea C. Arpaci-Dusseau. Error propagation analysis
for file systems. In Proceedings of the 2009 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages
270-280, Dublin, Ireland, June 2009.

Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve.
Using likely invariants for automated software fault localization. In
Proceedings of the 18th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
pages 139-152, Houston, TX, March 2013.

115

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(87]

(88]

David Schwalb, Tim Berning, Martin Faust}, Markus Dreseler, and
Hasso Plattnert. nvm malloc: Memory Allocation for NVRAM. In
Proceedings of the 41st International Conference on Very Large Data
Bases (VLDB), Hawaii, USA, September 2015.

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O Myreen. x86-tso: a rigorous and usable programmer’s
model for x86 multiprocessors. Communications of the ACM, 53(7):89-
97, 2010.

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.
Push-button verification of file systems via crash refinement. In 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 1-16, 2016.

Emina Torlak and Satish Chandra. Effective interprocedural resource
leak detection. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, pages 535-544, 2010.

Tianzheng Wang and Ryan Johnson. Scalable Logging Through Emerg-
ing Non-volatile Memory. In Proceedings of the 40th International Con-
ference on Very Large Data Bases (VLDB), Hangzhou, China, September
2014.

Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. HiKV: A Hybrid In-
dex Key-Value Store for DRAM-NVM Memory Systems. In Proceedings
of the 2017 USENIX Annual Technical Conference (ATC), Santa Clara,
CA, July 2017.

Jian Xu and Steven Swanson. NOVA: A log-structured file system
for hybrid volatile/non-volatile main memories. In Proceedings of the
14th USENIX Conference on File and Storage Technologies (FAST), Santa
Clara, California, USA, February 2016.

Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and
Taesoo Kim. Fuzzing file systems via two-dimensional input space
exploration. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 818-834. IEEE, 2019.

Junfeng Yang, Can Sar, and Dawson Engler. explode: A lightweight,
general system for finding serious storage system errors. In Proceed-
ings of the 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 10-10, Seattle, WA, November 2006.

Junfeng Yang, Paul Twohey, and Dawson. Using model checking
to find serious file system errors. In Proceedings of the 6th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pages 273-288, San Francisco, CA, December 2004.

Insu Yun, Changwoo Min, Xujie Si, Yeongjin Jang, Taesoo Kim, and
Mayur Naik. APISan: Sanitizing API Usages through Semantic Cross-
Checking. In 25th USENIX Security Symposium (USENLX Security),
pages 363-378, 2016.

Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and High-
Performance Hashing Index Scheme for Persistent Memory. In Pro-
ceedings of the 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Carlsbad, CA, October 2018.

https://www.usenix.org/conference/osdi20/presentation/neal
https://www.usenix.org/conference/osdi20/presentation/neal
https://doi.org/10.1145/2345156.2254126
http://dx.doi.org/10.1145/2345156.2254126
http://dx.doi.org/10.1145/2345156.2254126
https://doi.org/10.1145/3360561
http://dx.doi.org/10.1145/3360561

	Abstract
	1 Introduction
	2 Background
	2.1 Correctness Bugs
	2.2 Performance Bugs

	3 Overview of Our Approach
	3.1 Correctness Bug Finding
	3.2 Dynamic Trace Based Performance Bug Finding
	3.3 Comparison with Existing Solutions

	4 Design of Witcher
	4.1 Tracing Memory Accesses
	4.2 Inferring Likely-Correctness Conditions
	4.3 Generating Crash NVM Images
	4.4 Output Equivalence Checking
	4.5 Performance Bug Detection

	5 Discussion
	5.1 Testing Non-Key-value Store NVM Programs
	5.2 Testing Multi-threaded NVM Programs

	6 Implementation
	7 Evaluation
	7.1 Evaluation Methodology
	7.2 Detected Correctness Bugs
	7.3 Detected Crash Performance Bugs
	7.4 Statistics of Witcher Bug Finding
	7.5 Scalability and Comparison with Yat
	7.6 Bug Detection Effectiveness Comparison
	7.7 Testing Non-Key-value Store NVM Programs

	8 Related Work
	9 Conclusion
	References

